Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 120096, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38262286

RESUMO

The colour of a waterbody may be indicative of the water quality or environmental change. Monitoring water colour can therefore be an important proxy for various waterbody processes. To this aim, satellites are increasingly being used as viable alternatives to field measurements. This study investigates whether water colour derived from satellites is an effective predictor of spatial and temporal patterns of water quality or environmental change in small waterbodies and can be used to explain the drivers of trends in these waterbodies. As a case study, 145 small waterbodies (<1 km2) in the greater Melbourne, south-eastern Australia were analysed to understand water colour spatio-temporal patterns using Sentinel-2 and Landsat 5, 7 and 8 satellite surface reflectance imagery over a period of 30 years. We found that the baseline water colour of small waterbodies in the greater Melbourne region has a dominant wavelength in the green to yellow region of the visible spectrum (λd ranging from 532 to 578 nm). Waterbody design factors and broader climate factors were also tested to understand the spatial variation of baseline water colour. Macrophyte ratio and the shoreline development index were shown to be the primary waterbody design factors that affect water colour. Some waterbodies are responsive to climate variability based on investigating how climate factors impact the water colour variability. Local climate factors had more impact than regional climate factors. Results from this study highlight how water colour could be used as a proxy for waterbody health assessment and how spatio-temporal variations in water colour can be used to assess environmental trends.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Austrália , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Cor , Qualidade da Água
2.
J Environ Manage ; 323: 116225, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115245

RESUMO

Biogenic taste and odour (T&O) have become a global concern for water utilities, due to the increasing frequency of algal blooms and other microbial events arising from the combined effects of climate change and eutrophication. Microbially-produced T&O compounds impact source waters, drinking water treatment plants, and drinking water distribution systems. It is important to manage across the entire biogenic T&O pathway to identify key risk factors and devise strategies that will safeguard the quality of drinking water in a changing world, since the presence of T&O impacts consumer confidence in drinking water safety. This study provides a critical review of current knowledge on T&O-causing microbes and compounds for proactive management, including the identification of abiotic risk factors in source waters, a discussion on the effectiveness of existing T&O barriers in drinking water treatment plants, an analysis of risk factors for biofilm growth in water distribution systems, and an assessment of the impacts of T&O on consumers. The fate of biogenic T&O in drinking water systems is tracked from microbial production pathways, through the release of intracellular T&O by cell lysis, to the treatment of microbial cells and dissolved T&O. Based on current knowledge, five impactful research and management directions across the T&O pathway are recommended.


Assuntos
Água Potável , Purificação da Água , Água Potável/análise , Eutrofização , Odorantes/análise , Paladar , Abastecimento de Água
3.
Funct Plant Biol ; 49(6): 587, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533098

RESUMO

Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.

4.
Funct Plant Biol ; 49(6): 554-564, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34635201

RESUMO

Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.


Assuntos
Diatomáceas , Biomassa , Ecossistema , Ácidos Graxos/análise , Fotossíntese
5.
J Photochem Photobiol B ; 181: 31-43, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29486460

RESUMO

This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.


Assuntos
Carbono/metabolismo , Microalgas/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Transporte de Elétrons/efeitos da radiação , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Luz , Microalgas/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Tilacoides/química , Tilacoides/metabolismo
6.
ChemSusChem ; 8(16): 2727-36, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26212226

RESUMO

This study presents the first in-depth analysis of CO2 limitation on the biomass productivity of the biofuel candidate marine microalga Nannochloropsis oculata. Net photosynthesis decreased by 60% from 125 to 50 µmol O2 L(-1)h(-1) over a 12 h light cycle as a direct result of carbon limitation. Continuous dissolved O2 and pH measurements were used to develop a detailed diurnal mechanism for the interaction between photosynthesis, gas exchange and carbonate chemistry in the photo-bioreactor. Gas exchange determined the degree of carbon limitation experienced by the algae. Carbon limitation was confirmed by delivering more CO2 , which increased net photosynthesis back to its steady-state maximum. This study highlights the importance of maintaining replete carbon concentrations in photo-bioreactors and other culturing facilities, either by constant pH operation or preferably by designing a feedback loop based on the dissolved O2 concentration.


Assuntos
Reatores Biológicos , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Estramenópilas/metabolismo , Biomassa , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Microalgas/crescimento & desenvolvimento , Oxigênio/metabolismo , Fotossíntese , Estramenópilas/crescimento & desenvolvimento
7.
Biotechnol Bioeng ; 112(10): 2025-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25855209

RESUMO

Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation.


Assuntos
Chlamydomonas reinhardtii/crescimento & desenvolvimento , Modelos Biológicos , Modelos Teóricos , Biomassa , Reatores Biológicos/microbiologia , Dióxido de Carbono/metabolismo , Meios de Cultura/química , Processos Heterotróficos , Luz , Processos Fototróficos
8.
Bioresour Technol ; 184: 436-443, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25465782

RESUMO

The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1 million tonnes of bio-crude will generate almost 13,000 new jobs and 4 billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Microalgas/metabolismo , Austrália , Biocombustíveis/economia , Biotecnologia/economia , Conservação de Recursos Energéticos , Efeito Estufa , Indústrias , Petróleo/análise
9.
PLoS One ; 9(11): e112809, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389753

RESUMO

The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.


Assuntos
Antozoários/fisiologia , Dinoflagellida/fisiologia , Fotossíntese/fisiologia , Simbiose/fisiologia , Animais , Evolução Biológica , Recifes de Corais , Dinoflagellida/metabolismo , Transporte de Elétrons/fisiologia , Luz , Oxigênio/metabolismo , Fotobiologia/métodos
10.
Plant Physiol Biochem ; 83: 159-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146689

RESUMO

Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.


Assuntos
Antozoários/fisiologia , Luz , Animais , Transporte de Elétrons
11.
Bioresour Technol ; 169: 320-327, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063974

RESUMO

The first complete action spectrum of oxygen evolution and chlorophyll a fluorescence was measured for the biofuel candidate alga Nannochloropsis oculata. A novel analytical procedure was used to generate a representative and reproducible action spectrum for microalgal cultures. The action spectrum was measured at 14 discrete wavelengths across the visible spectrum, at an equivalent photon flux density of 60 µmol photon sm(-2) s(-1). Blue light (∼ 414 nm) was absorbed more efficiently and directed to photosystem II more effectively than red light (∼ 679 nm) at light intensities below the photosaturation limit. Conversion of absorbed photons into photosynthetic oxygen evolution was maximised at 625 nm; however, this maximum is unstable since neighbouring wavelengths (646 nm) resulted in the lowest photosystem II operating efficiency. Identifying the wavelength-dependence of photosynthesis has clear implications to optimising growth efficiency and hence important economic implications to the algal biofuels and bioproducts industries.


Assuntos
Clorofila/metabolismo , Microalgas/metabolismo , Oxigênio/metabolismo , Estramenópilas/metabolismo , Absorção Fisico-Química , Clorofila A , Fluorescência , Fótons , Fotossíntese , Espectrometria de Fluorescência
12.
Bioresour Technol ; 167: 521-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25016367

RESUMO

Multi-wavelength chlorophyll fluorescence analysis was utilised to examine the photosynthetic efficiency of the biofuel-producing alga Nannochloropsis oculata, grown under two light regimes; low (LL) and high (HL) irradiance levels. Wavelength dependency was evident in the functional absorption cross-section of Photosystem II (σII(λ)), absolute electron transfer rates (ETR(II)), and non-photochemical quenching (NPQ) of chlorophyll fluorescence in both HL and LL cells. While σII(λ) was not significantly different between the two growth conditions, HL cells upregulated ETR(II) 1.6-1.8-fold compared to LL cells, most significantly in the wavelength range of 440-540 nm. This indicates preferential utilisation of blue-green light, a highly relevant spectral region for visible light in algal pond conditions. Under these conditions, the HL cells accumulated saturated fatty acids, whereas polyunsaturated fatty acids were more abundant in LL cells. This knowledge is of importance for the use of N. oculata for fatty acid production in the biofuel industry.


Assuntos
Aclimatação , Clorofila/metabolismo , Microalgas/metabolismo , Fotossíntese , Absorção Fisico-Química , Transporte de Elétrons , Ésteres/análise , Ácidos Graxos/análise , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica
13.
PLoS One ; 9(1): e86047, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465862

RESUMO

A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20 °C versus a 15 °C to 25 °C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m(-2) s(-1). No differences in algal growth (Chlorophyll a) were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production.


Assuntos
Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Biocombustíveis/microbiologia , Clorofila/metabolismo , Clorofila A , Desenho de Equipamento , Luz , Microalgas/fisiologia , Fotoperíodo , Fotossíntese , Temperatura
14.
Phys Chem Chem Phys ; 15(26): 10783-94, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23689756

RESUMO

The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.


Assuntos
Hidrogênio/química , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Fotobiorreatores , Fotólise , Enxofre/química , Enxofre/metabolismo
15.
Adv Appl Microbiol ; 75: 71-110, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21807246

RESUMO

The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept.


Assuntos
Clorófitas , Fotossíntese , Bactérias/metabolismo , Biotecnologia , Chlamydomonas reinhardtii , Hidrogênio , Hidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...