Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0266244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390021

RESUMO

Many endangered species exist in only a single population, and almost all species that go extinct will do so from their last remaining population. Understanding how to best conserve these single population threatened species (SPTS) is therefore a distinct and important task for threatened species conservation science. As a last resort, managers of SPTS may consider taking the entire population into captivity-ex situ, in toto conservation. In the past, this choice has been taken to the great benefit of the SPTS, but it has also lead to catastrophe. Here, we develop a decision-support tool for planning when to trigger this difficult action. Our method considers the uncertain and ongoing decline of the SPTS, the possibility that drastic ex situ action will fail, and the opportunities offered by delaying the decision. Specifically, these benefits are additional time for ongoing in situ actions to succeed, and opportunities for the managers to learn about the system. To illustrate its utility, we apply the decision tool to four retrospective case-studies of declining SPTS. As well as offering support to this particular decision, our tool illustrates why trigger points for difficult conservation decisions should be formulated in advance, but must also be adaptive. A trigger-point for the ex situ, in toto conservation of a SPTS, for example, will not take the form of a simple threshold abundance.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Conservação dos Recursos Naturais/métodos , Estudos Retrospectivos , Pontos-Gatilho
2.
Phys Biol ; 18(4)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33789261

RESUMO

The detachment of cells from the boundary of an epithelial tissue and the subsequent invasion of these cells into surrounding tissues is important for cancer development and wound healing, and is strongly associated with the epithelial-mesenchymal transition (EMT). Chemical signals, such as TGF-ß, produced by surrounding tissue can be uptaken by cells and induce EMT. In this work, we present a novel cell-based discrete mathematical model of mechanical cellular relaxation, cell proliferation, and cell detachment driven by chemically-dependent EMT in an epithelial tissue. A continuum description of the model is then derived in the form of a novel nonlinear free boundary problem. Using the discrete and continuum models we explore how the coupling of chemical transport and mechanical interactions influences EMT, and postulate how this could be used to help control EMT in pathological situations.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/fisiologia , Transdução de Sinais , Fenômenos Biomecânicos
3.
Proc Math Phys Eng Sci ; 476(2243): 20200528, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33362419

RESUMO

In this study, we couple intracellular signalling and cell-based mechanical properties to develop a novel free boundary mechanobiological model of epithelial tissue dynamics. Mechanobiological coupling is introduced at the cell level in a discrete modelling framework, and new reaction-diffusion equations are derived to describe tissue-level outcomes. The free boundary evolves as a result of the underlying biological mechanisms included in the discrete model. To demonstrate the accuracy of the continuum model, we compare numerical solutions of the discrete and continuum models for two different signalling pathways. First, we study the Rac-Rho pathway where cell- and tissue-level mechanics are directly related to intracellular signalling. Second, we study an activator-inhibitor system which gives rise to spatial and temporal patterning related to Turing patterns. In all cases, the continuum model and free boundary condition accurately reflect the cell-level processes included in the discrete model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...