Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neuroradiol J ; : 19714009241260801, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864180

RESUMO

Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.

2.
Epilepsia ; 65(4): 944-960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318986

RESUMO

OBJECTIVE: To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data. METHODS: We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization. RESULTS: FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes. SIGNIFICANCE: We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Humanos , Criança , Eletroencefalografia/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética , Biomarcadores
3.
Brain Topogr ; 37(1): 88-101, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737957

RESUMO

INTRODUCTION: Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI). METHODS: We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature. RESULTS: Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators. CONCLUSIONS: Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Criança , Humanos , Estudos Retrospectivos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Sono/fisiologia , Eletroencefalografia/métodos
4.
Clin Neurophysiol ; 153: 88-101, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473485

RESUMO

OBJECTIVE: To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD). METHODS: We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome. RESULTS: EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering. CONCLUSIONS: EMSI provides superior localization and improved predictive performance than individual modalities. SIGNIFICANCE: EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Humanos , Criança , Epilepsia/diagnóstico , Eletroencefalografia , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Magnetoencefalografia/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/complicações , Fenômenos Eletromagnéticos , Resultado do Tratamento
5.
Sci Rep ; 13(1): 9622, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316544

RESUMO

Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.


Assuntos
Epilepsia Resistente a Medicamentos , Humanos , Criança , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Eletrocorticografia , Fator de Crescimento Transformador beta , Resultado do Tratamento
6.
Brain ; 146(9): 3898-3912, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018068

RESUMO

Neurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy. Yet, they lack specificity, mostly because they propagate across brain areas forming networks. Understanding the relationship between interictal spike propagation and functional connections among the involved brain areas may help develop novel biomarkers that can delineate the epileptogenic zone with high precision. Here, we reveal the relationship between spike propagation and effective connectivity among onset and areas of spread and assess the prognostic value of resecting these areas. We analysed intracranial EEG data from 43 children with drug resistant epilepsy who underwent invasive monitoring for neurosurgical planning. Using electric source imaging, we mapped spike propagation in the source domain and identified three zones: onset, early-spread and late-spread. For each zone, we calculated the overlap and distance from surgical resection. We then estimated a virtual sensor for each zone and the direction of information flow among them via Granger causality. Finally, we compared the prognostic value of resecting these zones, the clinically-defined seizure onset zone and the spike onset on intracranial EEG channels by estimating their overlap with resection. We observed a spike propagation in source space for 37 patients with a median duration of 95 ms (interquartile range: 34-206), a spatial displacement of 14 cm (7.5-22 cm) and a velocity of 0.5 m/s (0.3-0.8 m/s). In patients with good surgical outcome (25 patients, Engel I), the onset had higher overlap with resection [96% (40-100%)] than early-spread [86% (34-100%), P = 0.01] and late-spread [59% (12-100%), P = 0.002], and it was also closer to resection than late-spread [5 mm versus 9 mm, P = 0.007]. We found an information flow from onset to early-spread in 66% of patients with good outcomes, and from early-spread to onset in 50% of patients with poor outcome. Finally, resection of spike onset, but not area of spike spread or the seizure onset zone, predicted outcome with positive predictive value of 79% and negative predictive value of 56% (P = 0.04). Spatiotemporal mapping of spike propagation reveals information flow from onset to areas of spread in epilepsy brain. Surgical resection of the spike onset disrupts the epileptogenic network and may render patients with drug resistant epilepsy seizure-free without having to wait for a seizure to occur during intracranial monitoring.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Humanos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Epilepsia/cirurgia , Convulsões , Resultado do Tratamento
7.
Clin Neurophysiol ; 150: 40-48, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002979

RESUMO

OBJECTIVE: To evaluate whether ictal phase-amplitude coupling (PAC) between high-frequency activity and low-frequency activity could be used as a preoperative biomarker of Focal Cortical Dysplasia (FCD) subtypes. We hypothesize that FCD seizures present unique PAC characteristics that may be linked to their specific histopathological features. METHODS: We retrospectively examined 12 children with FCD and refractory epilepsy who underwent successful epilepsy surgery. We identified ictal onsets recorded with stereo-EEG. We estimated the strength of PAC between low-frequencies and high-frequencies for each seizure by means of modulation index. Generalized mixed effect models and receiver operating characteristic (ROC) curve analysis were used to test the association between ictal PAC and FCD subtypes. RESULTS: Ictal PAC was significantly higher in patients with FCD type II compared to type I, only on SOZ-electrodes (p < 0.005). No differences in ictal PAC were found on non-SOZ electrodes. Pre-ictal PAC registered on SOZ electrodes predicted FCD histopathology with a classification accuracy > 0.9 (p < 0.05). CONCLUSIONS: The correlations between histopathology and neurophysiology provide evidence for the contribution of ictal PAC as a preoperative biomarker of FCD subtypes. SIGNIFICANCE: Developed into a proper clinical application, such a technique may help improve clinical management and facilitate the prediction of surgical outcome in patients with FCD undergoing stereo-EEG monitoring.


Assuntos
Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Criança , Humanos , Estudos Retrospectivos , Epilepsia/cirurgia , Convulsões , Biomarcadores , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/cirurgia , Malformações do Desenvolvimento Cortical/patologia , Eletroencefalografia , Imageamento por Ressonância Magnética
8.
Brain ; 146(5): 1916-1931, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789500

RESUMO

Epilepsy is increasingly considered a disorder of brain networks. Studying these networks with functional connectivity can help identify hubs that facilitate the spread of epileptiform activity. Surgical resection of these hubs may lead patients who suffer from drug-resistant epilepsy to seizure freedom. Here, we aim to map non-invasively epileptogenic networks, through the virtual implantation of sensors estimated with electric and magnetic source imaging, in patients with drug-resistant epilepsy. We hypothesize that highly connected hubs identified non-invasively with source imaging can predict the epileptogenic zone and the surgical outcome better than spikes localized with conventional source localization methods (dipoles). We retrospectively analysed simultaneous high-density electroencephalography (EEG) and magnetoencephalography data recorded from 37 children and young adults with drug-resistant epilepsy who underwent neurosurgery. Using source imaging, we estimated virtual sensors at locations where intracranial EEG contacts were placed. On data with and without spikes, we computed undirected functional connectivity between sensors/contacts using amplitude envelope correlation and phase locking value for physiologically relevant frequency bands. From each functional connectivity matrix, we generated an undirected network containing the strongest connections within sensors/contacts using the minimum spanning tree. For each sensor/contact, we computed graph centrality measures. We compared functional connectivity and their derived graph centrality of sensors/contacts inside resection for good (n = 22, ILAE I) and poor (n = 15, ILAE II-VI) outcome patients, tested their ability to predict the epileptogenic zone in good-outcome patients, examined the association between highly connected hubs removal and surgical outcome and performed leave-one-out cross-validation to support their prognostic value. We also compared the predictive values of functional connectivity with those of dipoles. Finally, we tested the reliability of virtual sensor measures via Spearman's correlation with intracranial EEG at population- and patient-level. We observed higher functional connectivity inside than outside resection (P < 0.05, Wilcoxon signed-rank test) for good-outcome patients, on data with and without spikes across different bands for intracranial EEG and electric/magnetic source imaging and few differences for poor-outcome patients. These functional connectivity measures were predictive of both the epileptogenic zone and outcome (positive and negative predictive values ≥55%, validated using leave-one-out cross-validation) outperforming dipoles on spikes. Significant correlations were found between source imaging and intracranial EEG measures (0.4 ≤ rho ≤ 0.9, P < 0.05). Our findings suggest that virtual implantation of sensors through source imaging can non-invasively identify highly connected hubs in patients with drug-resistant epilepsy, even in the absence of frank epileptiform activity. Surgical resection of these hubs predicts outcome better than dipoles.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto Jovem , Humanos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Encéfalo , Eletroencefalografia/métodos , Resultado do Tratamento , Mapeamento Encefálico , Imageamento por Ressonância Magnética
9.
Front Psychiatry ; 13: 892259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815018

RESUMO

Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.

11.
Clin Neurophysiol ; 139: 49-57, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526353

RESUMO

OBJECTIVE: Delineation of the seizure onset zone (SOZ) is required in children with drug resistant epilepsy (DRE) undergoing neurosurgery. Intracranial EEG (icEEG) serves as gold standard but has limitations. Here, we examine the utility of virtual implantation with electrical source imaging (ESI) on ictal scalp EEG for mapping the SOZ and predict surgical outcome. METHODS: We retrospectively analyzed EEG data from 35 children with DRE who underwent surgery and dichotomized into seizure-free (SF) and non-seizure-free (NSF). We estimated virtual sensors (VSs) at brain locations that matched icEEG implantation and compared ictal patterns at VSs vs icEEG. We calculated the agreement between VSs SOZ and clinically defined SOZ and built receiver operating characteristic (ROC) curves to test whether it predicted outcome. RESULTS: Twenty-one patients were SF after surgery. Moderate agreement between virtual and icEEG patterns was observed (kappa = 0.45, p < 0.001). Virtual SOZ agreement with clinically defined SOZ was higher in SF vs NSF patients (66.6% vs 41.6%, p = 0.01). Anatomical concordance of virtual SOZ with clinically defined SOZ predicted outcome (AUC = 0.73; 95% CI: 0.57-0.89; sensitivity = 66.7%; specificity = 78.6%; accuracy = 71.4%). CONCLUSIONS: Virtual implantation on ictal scalp EEG can approximate the SOZ and predict outcome. SIGNIFICANCE: SOZ mapping with VSs may contribute to tailoring icEEG implantation and predict outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Couro Cabeludo/cirurgia , Convulsões/diagnóstico , Convulsões/cirurgia , Resultado do Tratamento
12.
Diagnostics (Basel) ; 12(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454065

RESUMO

Delineation of resected brain cavities on magnetic resonance images (MRIs) of epilepsy surgery patients is essential for neuroimaging/neurophysiology studies investigating biomarkers of the epileptogenic zone. The gold standard to delineate the resection on MRI remains manual slice-by-slice tracing by experts. Here, we proposed and validated a semiautomated MRI segmentation pipeline, generating an accurate model of the resection and its anatomical labeling, and developed a graphical user interface (GUI) for user-friendly usage. We retrieved pre- and postoperative MRIs from 35 patients who had focal epilepsy surgery, implemented a region-growing algorithm to delineate the resection on postoperative MRIs and tested its performance while varying different tuning parameters. Similarity between our output and hand-drawn gold standards was evaluated via dice similarity coefficient (DSC; range: 0-1). Additionally, the best segmentation pipeline was trained to provide an automated anatomical report of the resection (based on presurgical brain atlas). We found that the best-performing set of parameters presented DSC of 0.83 (0.72-0.85), high robustness to seed-selection variability and anatomical accuracy of 90% to the clinical postoperative MRI report. We presented a novel user-friendly open-source GUI that implements a semiautomated segmentation pipeline specifically optimized to generate resection models and their anatomical reports from epilepsy surgery patients, while minimizing user interaction.

13.
Clin Neurophysiol ; 141: 126-138, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33875376

RESUMO

OBJECTIVE: To assess the utility of interictal magnetic and electric source imaging (MSI and ESI) using dipole clustering in magnetic resonance imaging (MRI)-negative patients with drug resistant epilepsy (DRE). METHODS: We localized spikes in low-density (LD-EEG) and high-density (HD-EEG) electroencephalography as well as magnetoencephalography (MEG) recordings using dipoles from 11 pediatric patients. We computed each dipole's level of clustering and used it to discriminate between clustered and scattered dipoles. For each dipole, we computed the distance from seizure onset zone (SOZ) and irritative zone (IZ) defined by intracranial EEG. Finally, we assessed whether dipoles proximity to resection was predictive of outcome. RESULTS: LD-EEG had lower clusterness compared to HD-EEG and MEG (p < 0.05). For all modalities, clustered dipoles showed higher proximity to SOZ and IZ than scattered (p < 0.001). Resection percentage was higher in optimal vs. suboptimal outcome patients (p < 0.001); their proximity to resection was correlated to outcome (p < 0.001). No difference in resection percentage was seen for scattered dipoles between groups. CONCLUSION: MSI and ESI dipole clustering helps to localize the SOZ and IZ and facilitate the prognostic assessment of MRI-negative patients with DRE. SIGNIFICANCE: Assessing the MSI and ESI clustering allows recognizing epileptogenic areas whose removal is associated with optimal outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Análise por Conglomerados , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Convulsões/cirurgia
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 194-197, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891270

RESUMO

Studies on intracranial electroencephalography (icEEG) recordings of patients with drug resistant epilepsy (DRE) show that epilepsy biomarkers propagate in time across brain areas. Here, we propose a novel method that estimates critical features of these propagations for different epilepsy biomarkers (spikes, ripples, and fast ripples), and assess their common onset as a reliable biomarker of the epileptogenic zone (EZ). For each biomarker, an automatic algorithm ranked the icEEG electrodes according to their timing occurrence in propagations and finally dichotomized them as onset or spread. We validated our algorithm on icEEG recordings of 8 children with DRE having a good surgical outcome (Engel score = 1). We estimated the overlap of the onset, spread, and entire zone of propagation with the resection (RZ) and the seizure onset zone (SOZ). Spike and ripple propagations were seen in all patients, whereas fast ripple propagations were seen in 6 patients. Spike, ripple, and fast ripple propagations had a mean duration of 28.3 ± 24.3 ms, 38.7 ± 37 ms, and 25 ± 14 ms respectively. Onset electrodes predicted the RZ and SOZ with higher specificity compared to the entire zone for all three biomarkers (p<0.05). Overlap of spike and ripple onsets presented a higher specificity than each separate biomarker onset: for the SOZ, the onsets overlap was more specific (97.89 ± 2.36) than the ripple onset (p=0.031); for the RZ, the onsets overlap was more specific (98.48 ± 1.5) than the spike onset (p=0.016). Yet, the entire zone for spike and ripple propagations predicted the RZ with higher sensitivity compared to each biomarker's onset (or spread) (p<0.05). We present, for the first time, preliminary evidence from icEEG data that fast ripples propagate in time across large areas of the brain. The onsets overlap of spike and ripple propagations constitutes an extremely specific (but not sensitive) biomarker of the EZ, compared to areas of spread (and entire areas) in propagation.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Epilepsia Resistente a Medicamentos/diagnóstico , Eletrocorticografia , Eletroencefalografia , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 408-411, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891320

RESUMO

Children with medically refractory epilepsy (MRE) require resective neurosurgery to achieve seizure freedom, whose success depends on accurate delineation of the epileptogenic zone (EZ). Functional connectivity (FC) can assess the extent of epileptic brain networks since intracranial EEG (icEEG) studies have shown its link to the EZ and predictive value for surgical outcome in these patients. Here, we propose a new noninvasive method based on magnetoencephalography (MEG) and high-density (HD-EEG) data that estimates FC metrics at the source level through an "implantation" of virtual sensors (VSs). We analyzed MEG, HD-EEG, and icEEG data from eight children with MRE who underwent surgery having good outcome and performed source localization (beamformer) on noninvasive data to build VSs at the icEEG electrode locations. We analyzed data with and without Interictal Epileptiform Discharges (IEDs) in different frequency bands, and computed the following FC matrices: Amplitude Envelope Correlation (AEC), Correlation (CORR), and Phase Locking Value (PLV). Each matrix was used to generate a graph using Minimum Spanning Tree (MST), and for each node (i.e., each sensor) we computed four centrality measures: betweenness, closeness, degree, and eigenvector. We tested the reliability of VSs measures with respect to icEEG (regarded as benchmark) via linear correlation, and compared FC values inside vs. outside resection. We observed higher FC inside than outside resection (p<0.05) for AEC [alpha (8-12 Hz), beta (12-30 Hz), and broadband (1-50 Hz)] on data with IEDs and AEC theta (4-8 Hz) on data without IEDs for icEEG, AEC broadband (1-50 Hz) on data without IEDs for MEG-VSs, as well as for all centrality measures of icEEG and MEG/HD-EEG-VSs. Additionally, icEEG and VSs metrics presented high correlation (0.6-0.9, p<0.05). Our data support the notion that the proposed method can potentially replicate the icEEG ability to map the epileptogenic network in children with MRE.Clinical Relevance - The estimation of FC with noninvasive techniques, such as MEG and HD-EEG, via VSs is a promising tool that would help the presurgical evaluation by delineating the EZ without waiting for a seizure to occur, and potentially improve the surgical outcome of patients with MRE undergoing surgery.


Assuntos
Mapeamento Encefálico , Epilepsia Resistente a Medicamentos , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Humanos , Magnetoencefalografia , Reprodutibilidade dos Testes
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2668-2671, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891801

RESUMO

Interictal epileptiform discharges (IEDs) serve as sensitive but not specific biomarkers of epilepsy that can delineate the epileptogenic zone (EZ) in patients with drug resistant epilepsy (DRE) undergoing surgery. Intracranial EEG (icEEG) studies have shown that IEDs propagate in time across large areas of the brain. The onset of this propagation is regarded as a more specific biomarker of epilepsy than areas of spread. Yet, the limited spatial resolution of icEEG does not allow to identify the onset of this activity with high precision. Here, we propose a new method of mapping the spatiotemporal propagation of IEDs (and identify its onset) by using Electrical Source Imaging (ESI) on icEEG bypassing the spatial limitations of icEEG. We validated our method on icEEG recordings from 8 children with DRE who underwent surgery with good outcome (Engel score =1). On each icEEG channel, we detected IEDs and identified the propagation onset using an automated algorithm. We localized the propagation of IEDs with dynamic Statistical Parametric Mapping (dSPM) using a time-sliding window approach. We defined two brain regions: the ESI-onset and ESI-spread zone. We estimated the overlap of these regions with resection volume (in percentage), which served as the gold-standard of the EZ. We also estimated the mean distance of these regions from resection and clinically defined seizure onset zone (SOZ). We observed spatio-temporal propagation of IEDs in all patients across several channels (98 [85-102]) with a mean duration of 155 ms [96-186 ms]. A higher overlap with resection was seen for the ESI-onset zone compared to spread (73.3 % [ 47.4-100 %], 36.5 % [20.3-59.9 %], p = 0.008). The distance of the ESI-onset from resection was shorter compared to the ESI-spread zone (4.3 mm [3.4-5.5 mm], 7.4 mm [6.0-20.6 mm], p = 0.008) and the same trend was observed for the distance from the SOZ (11.9 mm [7.2-15.1 mm], 20.6 mm [15.4-27.2 mm], p = 0.02). These findings show that our method can map the spatiotemporal propagation of IEDs and de-lineate its onset, which is a reliable and focal biomarker of the EZ in children with DRE.Clinical Relevance - ESI on icEEG recordings of children with DRE can localize the spikes propagation phenomenon and help in the delineation of the EZ.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Mapeamento Encefálico , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Humanos , Convulsões
17.
Diagnostics (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359317

RESUMO

About 30% of children with drug-resistant epilepsy (DRE) continue to have seizures after epilepsy surgery. Since epilepsy is increasingly conceptualized as a network disorder, understanding how brain regions interact may be critical for planning re-operation in these patients. We aimed to estimate functional brain connectivity using scalp EEG and its evolution over time in patients who had repeated surgery (RS-group, n = 9) and patients who had one successful surgery (seizure-free, SF-group, n = 12). We analyzed EEGs without epileptiform activity at varying time points (before and after each surgery). We estimated functional connectivity between cortical regions and their relative centrality within the network. We compared the pre- and post-surgical centrality of all the non-resected (untouched) regions (far or adjacent to resection) for each group (using the Wilcoxon signed rank test). In alpha, theta, and beta frequency bands, the post-surgical centrality of the untouched cortical regions increased in the SF group (p < 0.001) whereas they decreased (p < 0.05) or did not change (p > 0.05) in the RS group after failed surgeries; when re-operation was successful, the post-surgical centrality of far regions increased (p < 0.05). Our data suggest that removal of the epileptogenic focus in children with DRE leads to a gain in the network centrality of the untouched areas. In contrast, unaltered or decreased connectivity is seen when seizures persist after surgery.

18.
Epilepsy Behav ; 122: 108228, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34388667

RESUMO

INTRODUCTION: Generalized tonic-clonic seizures (GTCS) are associated with elevated electrodermal activity (EDA) and postictal generalized electroencephalographic suppression (PGES), markers that may indicate sudden unexpected death in epilepsy (SUDEP) risk. This study investigated the association of GTCS semiology, EDA, and PGES in children with epilepsy. METHODS: Patients admitted to the Boston Children's Hospital long-term video-EEG monitoring unit wore a sensor that records EDA. We selected patients with at least one GTCS and reviewed video-EEGs for semiology, tonic and clonic phase duration, total clinical seizure duration, electrographic onset, offset, and PGES. We grouped patients into three semiology classes: GTCS 1: bilateral symmetric tonic arm extension, GTCS 2: no specific tonic arm extension or flexion, GTCS 3: unilateral or asymmetrical arm extension, tonic arm flexion or posturing that does not fit into GTCS 1 or 2. We analyzed the correlation between semiology, EDA, and PGES, and measured the area under the curve (AUC) of the ictal EDA (seizure onset to one hour after), subtracting baseline EDA (one-hour seizure-free before seizure onset). Using generalized estimating equation (GEE) and linear regression, we analyzed all seizures and single episodes per patient. RESULTS: We included 30 patients (median age 13.8 ±â€¯3.6 years, 46.7% females) and 53 seizures. With GEE, GTCS 1 was associated with longer PGES duration compared to GTCS 2 (Estimate (ß) = -26.32 s, 95% Confidence Interval (CI): -36.46 to -16.18, p < 0.001), and the presence of PGES was associated with greater EDA change (ß = 429604 µS, 95% CI: 3550.96 to 855657.04, p = 0.048). With single-episode analysis, GTCS 1 had greater EDA change than GTCS 2 ((ß = -601339 µS, 95% CI: -1167016.56 to -35661.44, p = 0.047). EDA increased with PGES presence (ß = 637500 µS, 95% CI: 183571.84 to 1091428.16, p = 0.01) and duration (ß = 16794 µS, 95% CI: 5729.8 to 27858.2, p = 0.006). Patients with GTCS 1 had longer PGES duration compared to GTCS 2 (ß = -30.53 s, 95% CI: -44.6 to -16.46, p < 0.001) and GTCS 3 (ß = -22.07 s, 95% CI: -38.95 to -5.19, p = 0.016). CONCLUSION: In children with epilepsy, PGES correlates with greater ictal EDA. GTCS 1 correlated with longer PGES duration and may indirectly correlate with greater ictal EDA. Our study suggests potential applications in monitoring and preventing SUDEP in these patients.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Adolescente , Criança , Eletroencefalografia , Feminino , Humanos , Masculino , Convulsões/complicações , Convulsões/diagnóstico , Fatores de Tempo
19.
Clin Neurophysiol ; 132(7): 1622-1635, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034087

RESUMO

OBJECTIVE: To assess whether ictal electric source imaging (ESI) on low-density scalp EEG can approximate the seizure onset zone (SOZ) location and predict surgical outcome in children with refractory epilepsy undergoing surgery. METHODS: We examined 35 children with refractory epilepsy. We dichotomized surgical outcome into seizure- and non-seizure-free. We identified ictal onsets recorded with scalp and intracranial EEG and localized them using equivalent current dipoles and standardized low-resolution magnetic tomography (sLORETA). We estimated the localization accuracy of scalp EEG as distance of scalp dipoles from intracranial dipoles. We also calculated the distances of scalp dipoles from resection, as well as their resection percentage and compared between seizure-free and non-seizure-free patients. We built receiver operating characteristic curves to test whether resection percentage predicted outcome. RESULTS: Resection distance was lower in seizure-free patients for both dipoles (p = 0.006) and sLORETA (p = 0.04). Resection percentage predicted outcome with a sensitivity of 57.1% (95% CI, 34-78.2%), a specificity of 85.7% (95% CI, 57.2-98.2%) and an accuracy of 68.6% (95% CI, 50.7-83.5%) (p = 0.01). CONCLUSION: Ictal ESI performed on low-density scalp EEG can delineate the SOZ and predict outcome. SIGNIFICANCE: Such an application may increase the number of children who are referred for epilepsy surgery and improve their outcome.


Assuntos
Eletroencefalografia/tendências , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Valor Preditivo dos Testes , Estudos Retrospectivos , Convulsões/cirurgia , Tomografia Computadorizada de Emissão de Fóton Único/tendências , Resultado do Tratamento , Adulto Jovem
20.
Ann Neurol ; 89(5): 911-925, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710676

RESUMO

OBJECTIVE: Intracranial electroencephalographic (icEEG) studies show that interictal ripples propagate across the brain of children with medically refractory epilepsy (MRE), and the onset of this propagation (ripple onset zone [ROZ]) estimates the epileptogenic zone. It is still unknown whether we can map this propagation noninvasively. The goal of this study is to map ripples (ripple zone [RZ]) and their propagation onset (ROZ) using high-density EEG (HD-EEG) and magnetoencephalography (MEG), and to estimate their prognostic value in pediatric epilepsy surgery. METHODS: We retrospectively analyzed simultaneous HD-EEG and MEG data from 28 children with MRE who underwent icEEG and epilepsy surgery. Using electric and magnetic source imaging, we estimated virtual sensors (VSs) at brain locations that matched the icEEG implantation. We detected ripples on VSs, defined the virtual RZ and virtual ROZ, and estimated their distance from icEEG. We assessed the predictive value of resecting virtual RZ and virtual ROZ for postsurgical outcome. Interictal spike localization on HD-EEG and MEG was also performed and compared with ripples. RESULTS: We mapped ripple propagation in all patients with HD-EEG and in 27 (96%) patients with MEG. The distance from icEEG did not differ between HD-EEG and MEG when mapping the RZ (26-27mm, p = 0.6) or ROZ (22-24mm, p = 0.4). Resecting the virtual ROZ, but not virtual RZ or the sources of spikes, was associated with good outcome for HD-EEG (p = 0.016) and MEG (p = 0.047). INTERPRETATION: HD-EEG and MEG can map interictal ripples and their propagation onset (virtual ROZ). Noninvasively mapping the ripple onset may augment epilepsy surgery planning and improve surgical outcome of children with MRE. ANN NEUROL 2021;89:911-925.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Magnetoencefalografia , Masculino , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...