Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37506007

RESUMO

Integration of multi-modal sensory inputs and modulation of motor outputs based on perceptual estimates is called Sensorimotor Integration (SMI). Optimal functioning of SMI is essential for perceiving the environment, modulating the motor outputs, and learning or modifying motor skills to suit the demands of the environment. Growing evidence suggests that patients diagnosed with Parkinson's Disease (PD) may suffer from an impairment in SMI that contributes to perceptual deficits, leading to motor abnormalities. However, the exact nature of the SMI impairment is still unclear. This study uses a robot-assisted assessment tool to quantitatively characterize SMI impairments in PD patients and how they affect voluntary movements. A set of assessment tasks was developed using a robotic manipulandum equipped with a virtual-reality system. The sensory conditions of the virtual environment were varied to facilitate the assessment of SMI. A hundred PD patients (before and after medication) and forty-three control subjects completed the tasks under varying sensory conditions. The kinematic measures obtained from the robotic device were used to evaluate SMI. The findings reveal that across all sensory conditions, PD patients had 36% higher endpoint error, 38% higher direction error in reaching tasks, and 43% higher number of violations in tracing tasks than control subjects due to impairment in integrating sensory inputs. However, they still retained motor learning ability and the ability to modulate motor outputs. The medication worsened the SMI deficits as PD patients, after medication, performed worse than before medication when encountering dynamic sensory environments and exhibited impaired motor learning ability.


Assuntos
Doença de Parkinson , Doença de Parkinson/tratamento farmacológico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Robótica , Aprendizado de Máquina , Análise e Desempenho de Tarefas
2.
Sci Rep ; 13(1): 4751, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959273

RESUMO

Sensorimotor control (SMC) is a complex function that involves sensory, cognitive, and motor systems working together to plan, update and execute voluntary movements. Any abnormality in these systems could lead to deficits in SMC, which would negatively impact an individual's ability to execute goal-directed motions. Recent studies have shown that patients diagnosed with Parkinson's disease (PD) have dysfunctions in sensory, motor, and cognitive systems, which could give rise to SMC deficits. However, SMC deficits in PD and how they affect a patient's upper-limb movements have not been well understood. The objective of the study was to investigate SMC deficits in PD and how they affect the planning and correction of upper-limb motions. This was accomplished using a robotic manipulandum equipped with a virtual-reality system. Twenty age-matched healthy controls and fifty-six PD patients (before and after medication) completed an obstacle avoidance task under dynamic conditions (target and obstacles in moving or stationary form, with and without mechanical perturbations). Kinematic information from the robot was used to extract eighteen features that evaluated the SMC functions of the participants. The findings show that the PD patients before medication were 32% slower, reached 16% fewer targets, hit 41% more obstacles, and were 26% less efficient than the control participants, and the difference in these features was statistically significant under dynamic conditions. In addition to the motor deficits, the PD patients also showed deficits in handling high cognitive loads and interpreting sensory cues. Further, the PD patients after medication exhibited worse sensory and cognitive performance than before medication under complex testing conditions. The PD patients also showed deficits in following the computational models leading to poor motor planning.


Assuntos
Doença de Parkinson , Robótica , Humanos , Movimento , Sensação , Sinais (Psicologia) , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...