Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 17(7): 579-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24517834

RESUMO

Yersinia pestis, a Gram negative bacillus, spreads via lymphatic to lymph nodes and to all organs through the bloodstream, causing plague. Yersinia outer protein H (YopH) is one of the important effector proteins, which paralyzes lymphocytes and macrophages by dephosphorylating critical tyrosine kinases and signal transduction molecules. The purpose of the study is to generate a three-dimensional (3D) pharmacophore model by using diverse sets of YopH inhibitors, which would be useful for designing of potential antitoxin. In this study, we have selected 60 biologically active inhibitors of YopH to perform Ligand based pharmacophore study to elucidate the important structural features responsible for biological activity. Pharmacophore model demonstrated the importance of two acceptors, one hydrophobic and two aromatic features toward the biological activity. Based on these features, different databases were screened to identify novel compounds and these ligands were subjected for docking, ADME properties and Binding energy prediction. Post docking validation was performed using molecular dynamics simulation for selected ligands to calculate the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF). The ligands, ASN03270114, Mol_252138, Mol_31073 and ZINC04237078 may act as inhibitors against YopH of Y. pestis.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Peste/tratamento farmacológico , Peste/microbiologia , Proteínas Tirosina Fosfatases/metabolismo , Yersinia pestis/efeitos dos fármacos , Animais , Proteínas da Membrana Bacteriana Externa/química , Descoberta de Drogas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Tirosina Fosfatases/química
2.
Bioinformation ; 9(6): 286-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23559747

RESUMO

Ebolavirus, a member of the Filoviridae family of negative-sense RNA viruses, causes severe haemorrhagic fever leading up to 90% lethality. Ebolavirus matrix protein VP40 is involved in the virus assembly and budding process. The RNA binding pocket of VP40 is considered as the drug target site for structure based drug design. High Throughput Virtual Screening and molecular docking studies were employed to find the suitable inhibitors against VP40. Ten compounds showing good glide score and glide energy as well as interaction with specific amino acid residues were short listed as drug leads. These small molecule inhibitors could be potent inhibitors for VP40 matrix protein by blocking virus assembly and budding process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...