Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA Res ; 8(4): 661-674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860265

RESUMO

In the current phase of medical progress, practical neuro-oncology faces critical challenges. These include the quest for and development of innovative methodological approaches, as well as the enhancement of conventional therapies to boost their efficacy in treating brain tumors, especially the malignant varieties. Recent strides in molecular and cellular biology, molecular genetics, and immunology have charted the primary research pathways in the development of new anti-cancer medications, with a particular focus on microRNA (miRNA)-based therapy. MiRNAs possess the ability to function as suppressors of tumor growth while also having the potential to act as oncogenes. MiRNAs wield control over numerous processes within the human body, encompassing tumor growth, proliferation, invasion, metastasis, apoptosis, angiogenesis, and immune responses. A significant impediment to enhancing the efficacy of brain tumor treatment lies in the unresolved challenge of traversing the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to deliver therapeutic agents directly to the tumor tissue. Presently, there is a worldwide effort to conduct intricate research and design endeavors aimed at creating miRNA-based dosage forms and delivery systems that can effectively target various structures within the central nervous system (CNS). MiRNA-based therapy stands out as one of the most promising domains in neuro-oncology. Hence, the development of efficient and safe methods for delivering miRNA agents to the specific target cells within brain tumors is of paramount importance. In this study, we will delve into recent findings regarding various methods for delivering miRNA agents to brain tumor cells. We will explore the advantages and disadvantages of different delivery systems and consider some clinical aspects of miRNA-based therapy for brain tumors.

2.
Noncoding RNA Res ; 8(4): 686-692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860267

RESUMO

Traumatic brain injury (TBI) is a complex neurological disorder that often results in long-term disabilities, cognitive impairments, and emotional disturbances. Despite significant advancements in understanding the pathophysiology of TBI, effective treatments remain limited. In recent years, exosomal non-coding RNAs (ncRNAs) have emerged as potential players in TBI pathogenesis and as novel diagnostic and therapeutic targets. Exosomal ncRNAs are small RNA molecules that are secreted by cells and transported to distant sites, where they can modulate gene expression and cell signaling pathways. They have been shown to play important roles in various aspects of TBI, such as neuroinflammation, blood-brain barrier dysfunction, and neuronal apoptosis. The ability of exosomal ncRNAs to cross the blood-brain barrier and reach the brain parenchyma makes them attractive candidates for non-invasive biomarkers and drug delivery systems. However, significant challenges still need to be addressed before exosomal ncRNAs can be translated into clinical practice, including standardization of isolation and quantification methods, validation of their diagnostic and prognostic value, and optimization of their therapeutic efficacy and safety. This review aims to summarize the current knowledge regarding the role of exosomal ncRNAs in TBI, including their biogenesis, function, and potential applications in diagnosis, prognosis, and treatment. We also discuss the challenges and future perspectives of using exosomal ncRNAs as clinical tools for TBI management.

3.
Noncoding RNA Res ; 8(2): 233-239, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36890809

RESUMO

Cervical cancer is the second most common cancer in women. The detection of oncopathologies in the early stages of development is a paramount task of modern medicine, which can be solved only by improving modern diagnostic methods. The use of screening for certain tumor markers could complement modern tests such as testing for oncogenic types of human papillomavirus (HPV), cytology, colposcopy with acetic acid and iodine solutions. Such highly informative biomarkers can be long noncoding RNAs (lncRNAs) that are highly specific compared to the mRNA profile and are involved in the regulation of gene expression. LncRNAs are a class of non-coding RNAs molecules that are typically over 200 nucleotides in length. LncRNAs may be involved in the regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling pathways, and apoptosis. LncRNAs molecules are highly stable due to their small size, which is also their undoubted advantage. The study of individual lncRNAs as regulators of the expression of genes involved in the mechanisms of oncogenesis cervical cancer can be not only of great diagnostic value, but, as a result, of therapeutic significance in cervical cancer patients. This review article will present the characteristics of lncRNAs that allow them to be used as accurate diagnostic and prognostic tools, as well as to consider them as effective therapeutic targets in cervical cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...