Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980718

RESUMO

Energetic Metal-Organic Framework (EMOF) compounds have gained significant attention in recent years as a hot research topic in the fields of explosives and propellants. This article provides an overview of the latest research progress of EMOFs in various areas, including heat-resistant explosives, burning rate catalysts and initiating explosives. It discusses the recent development trends of high-energy EMOFs, such as high-dimensional and solvent-free structural design, simplified and scalable synthesis conditions, environmentally friendly manufacturing processes with tunable structures, high-energy, low-sensitivity and multifunctional target products. The challenges and issues faced by EMOFs in heat-resistant explosives, burning rate catalysts and initiating explosives are presented. Furthermore, the key research directions for future applications of EMOFs in the fields of explosives and propellants are discussed, including solvent-free high-dimensional EMOFs design and synthesis, precise modulation of EMOFs molecular composition and pore structure, improvement of accurate prediction methods for physicochemical properties of high-energy EMOFs, low-cost large-scale production and development of multifunctional composite EMOFs as energetic materials, exploration of influencing factors, and comprehensive study on the application of novel and high-performance multifunctional EMOFs.

2.
RSC Adv ; 13(19): 12677-12684, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37101528

RESUMO

Developing MOF-based catalysts with superior catalytic properties for the thermal decomposition of cyclotrimethylenetrinitramine (RDX) is significant for the application of novel and efficient combustion catalysts oriented to RDX-based propellants with excellent combustion performance. Herein, micro-sized Co-ZIF-L with a star-like morphology (SL-Co-ZIF-L) was found to exhibit unprecedented catalytic capability for the decomposition of RDX, which can lower the decomposition temperature of RDX by 42.9 °C and boost the heat release by 50.8%, superior to that of all the ever-reported MOFs and even ZIF-67, which has similar chemical composition but a much smaller size. In-depth mechanism study from both experimental and theoretical views reveals that the weekly interacted 2D layered structure of SL-Co-ZIF-L could activate the exothermic C-N fission pathway for the decomposition of RDX in the condensed phase, thus reversing the commonly advantageous N-N fission pathway and promoting the decomposition process in the low-temperature stage. Our study reveals the unusually superior catalytic capability of micro-sized MOF catalysts and sheds light on the rational structure design of catalysts used in micromolecule transformation reactions, typically the thermal decomposition of energetic materials.

3.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838887

RESUMO

Artificial intelligence technology shows the advantages of improving efficiency, reducing costs, shortening time, reducing the number of staff on site and achieving precise operations, making impressive research progress in the fields of drug discovery and development, but there are few reports on application in energetic materials. This paper addresses the high safety risks in the current nitrification process of energetic materials, comprehensively analyses and summarizes the main safety risks and their control elements in the nitrification process, proposes possibilities and suggestions for using artificial intelligence technology to enhance the "essential safety" of the nitrification process in energetic materials, reviews the research progress of artificial intelligence in the field of drug synthesis, looks forward to the application prospects of artificial intelligence technology in the nitrification of energetic materials and provides support and guidance for the safe processing of nitrification in the propellants and explosives industry.


Assuntos
Inteligência Artificial , Substâncias Explosivas , Humanos , Nitrificação , Tecnologia , Descoberta de Drogas
4.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500463

RESUMO

ZIF-67 is a three-dimensional zeolite imidazole ester framework material with a porous rhombic dodecahedral structure, a large specific surface area and excellent thermal stability. In this paper, the catalytic effect of ZIF-67 on five kinds of energetic materials, including RDX, HMX, CL-20, AP and the new heat-resistant energetic compound DAP-4, was investigated. It was found that when the mass fraction of ZIF-67 was 2%, it showed excellent performance in catalyzing the said compounds. Specifically, ZIF-67 reduced the thermal decomposition peak temperatures of RDX, HMX, CL-20 and DAP-4 by 22.3 °C, 18.8 °C, 4.7 °C and 10.5 °C, respectively. In addition, ZIF-67 lowered the low-temperature and high-temperature thermal decomposition peak temperatures of AP by 27.1 °C and 82.3 °C, respectively. Excitingly, after the addition of ZIF-67, the thermal decomposition temperature of the new heat-resistant high explosive DAP-4 declined by approximately 10.5 °C. In addition, the kinetic parameters of the RDX+ZIF-67, HMX+ZIF-67, CL-20+ZIF-67 and DAP-4+ZIF-67 compounds were analyzed. After the addition of the ZIF-67 catalyst, the activation energy of the four energetic materials decreased, especially HMX+ZIF-67, whose activation energy was approximately 190 kJ·mol-1 lower than that reported previously for HMX. Finally, the catalytic mechanism of ZIF-67 was summarized. ZIF-67 is a potential lead-free, green, insensitive and universal EMOFs-based energetic burning rate catalyst with a bright prospect for application in solid propellants in the future.


Assuntos
Substâncias Explosivas , Zeolitas , Elétrons , Substâncias Explosivas/química , Zeolitas/química , Cinética , Temperatura
5.
Front Chem ; 10: 1032163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311438

RESUMO

Energetic Metal Organic Frameworks (EMOFs) have been a hotspot of research on solid propellants in recent years. In this paper, research on the application of EMOFs-based burning rate catalysts in solid propellants was reviewed and the development trend of these catalysts was explored. The catalysts analyzed included monometallic organic frameworks-based energetic burning rate catalysts, bimetallic multifunctional energetic burning rate catalysts, carbon-supported EMOFs burning rate catalysts, and catalysts that can be used in conjunction with EMOFs. The review suggest that monometallic organic frameworks-based burning rate catalysts have relatively simple catalytic effects, and adding metal salts can improve their catalytic effect. Bimetallic multifunctional energetic burning rate catalysts have excellent catalytic performance and the potential for broad application. The investigation of carbon-supported EMOFs burning rate catalysts is still at a preliminary stage, but their preparation and application have become a research focus in the burning rate catalyst field. The application of catalysts that can be compounded with EMOFs should be promoted. Finally, environmental protection, high energy and low sensitivity, nanometerization, multifunctional compounding and solvent-free are proposed as key directions of future research. This study aims to provide a reference for the application of energetic organic burning rate catalysts in solid propellants.

6.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015589

RESUMO

A Diels-Alder (DA) bond containing poly(tetrahydrofuran)-co-(ethyleneoxide) (PET) based linear polyurethane (PET-DA-PU) was synthesized via a prepolymer process using PET as raw material, DA diol as chain extender agent, and toluene-2,4-diisocyanate (TDI) as coupling agent. The structure of PET-DA-PU was characterized by attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance spectrometry (1H NMR) and carbon nuclear magnetic resonance spectrometry (13C NMR). The thermal performance and self-healing behavior of PET-DA-PU were investigated by differential scanning calorimetry (DSC), polarized optical microscope, universal testing machine, scanning electron microscopy (SEM) and NMR, respectively. The glass transition temperature of PET-DA-PU was found to be -59 °C. Under the heat treatment at 100 °C, the crack on PET-DA-PU film completely disappeared in 9 min, and the self-healing efficiency that was determined by the recovery of the largest tensile strength after being damaged and healed at 100 °C for 20 min can reach 89.1%. SEM images revealed the micro-cracks along with the blocky aggregated hard segments which were the important reasons for fracture. NMR spectroscopy indicated that the efficiency of retro DA reaction of PET-DA-PU was 70% after 20 min heating treatment at 100 °C. Moreover, the PET-DA-PU/Al/Na2SO4 composite was also prepared to simulate propellant formulation and investigated by universal testing machine and SEM; its healing efficiency was up to 87.8% under the same heat treatment process and exhibits good self-healing ability. Therefore, PET-DA-PU may serve as a promising thermally self-healing polymeric binder for future propellant formulations.

7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743154

RESUMO

Safety concerns remain a bottleneck for the application of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) cocrystal. Melamine-formaldehyde (MF) resin was chosen to fabricate CL-20/HMX cocrystal-based core-shell composites (CH@MF composites) via a facile in situ polymerization method. The resulted CH@MF composites were comprehensively characterized, and a compact core-shell structure was confirmed. The effects of the shell content on the properties of the composites were explored as well. As a result, we found that, except for CH@MF-2 with a 1% shell content, the increase in shell content led to a rougher surface morphology and more close-packed structure. The thermal decomposition peak temperature improved by 5.3 °C for the cocrystal enabled in 1.0 wt% MF resin. Regarding the sensitivity, the CH@MF composites exhibited a significantly reduced impact and friction sensitivity with negligible energy loss compared with the raw cocrystal and physical mixtures due to the cushioning and insulation effects of the MF coating. The formation mechanism of the core-shell micro-composites was further clarified. Overall, this work provides a green, facile and industrially potential strategy for the desensitization of energetic cocrystals. The CH@MF composites with high thermal stability and low sensitivity are promising to be applied in propellants and polymer-bonded explosive (PBX) formulations.


Assuntos
Formaldeído , Polímeros , Azocinas , Polimerização , Polímeros/química , Triazinas
8.
Dalton Trans ; 51(20): 7804-7810, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35441648

RESUMO

Exploring the facile synthesis of Pb-free energetic metal-organic frameworks (EMOFs) with both high nitrogen content and high thermostability is a significant but challenging task in the field of MOF-based green energetic materials. Herein, a new EMOF, [Zn2(atz)3(N3)]n (atz = 5-amino-1H-tetrazole), has been synthesized by simply using a commercial ligand (atz) under mild conditions. A probable mechanism for the formation of azide groups in the product has been proposed, in which the fraction of C-N and N-N bonds in atz is the key. The X-ray single crystal structure analysis reveals the EMOF's unique graphene-like and azide-group-bridged 2D bilayer structure with gourd-type micropores. More impressively, the EMOF shows a high nitrogen content of 59.33% and superior thermostability of up to 362 °C, both among the best of existing EMOFs. In addition, detonation property calculations and sensitivity tests have been carried out, which demonstrate its high-energy and low-sensitivity features. Moreover, [Zn2(atz)3(N3)]n shows the ability to accelerate the thermal decomposition of ammonium perchlorate (AP) and hexanitrohexaazaisowurtzitane (CL-20), making it a potential combustion promoter for green and insensitive propellants.

9.
Chem Sci ; 11(37): 10198-10203, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34094284

RESUMO

Rapid assembly of fluorene-based spirocycles represents a highly significant but challenging task in organic synthesis. Reported herein is a novel Pd(0)-catalyzed [4+1] spiroannulation of simple o-iodobiaryls with bromonaphthols for the one-step construction of [4,5]-spirofluorenes in high yields with excellent functional group tolerance. Noteworthily, these valuable fluorene-based coumarin skeletons can enrich the database of C-coumarins and exhibit excellent spectroscopic properties.

10.
Angew Chem Int Ed Engl ; 58(5): 1474-1478, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30537202

RESUMO

A novel palladium-catalyzed [4+1] spiroannulation was developed by using a C(sp3 )-H activation/naphthol dearomatization approach. This bimolecular domino reaction of two aryl halides was realized through a sequence of cyclometallation-facilitated C(sp3 )-H activation, biaryl cross-coupling, and naphthol dearomatization, thus rendering the rapid assembly of a new class of spirocyclic molecules in good yields with broad functional-group tolerance. Preliminary mechanistic studies indicate that C-H cleavage is likely involved in the rate-determining step, and a five-membered palladacycle was identified as the key intermediate for the intermolecular coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...