Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3438, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143624

RESUMO

Utilization of ubiquitous low-grade waste heat constitutes a possible avenue towards soft matter actuation and energy recovery opportunities. While most soft materials are not all that smart relying on power input of some kind for continuous response, we conceptualize a self-locked thermo-mechano feedback for autonomous motility and energy generation functions. Here, the low-grade heat usually dismissed as 'not useful' is used to fuel a soft thermo-mechano-electrical system to perform perpetual and untethered multimodal locomotions. The innately resilient locomotion synchronizes self-governed and auto-sustained temperature fluctuations and mechanical mobility without external stimulus change, enabling simultaneous harvesting of thermo-mechanical energy at the pyro/piezoelectric mechanistic intersection. The untethered soft material showcases deterministic motions (translational oscillation, directional rolling, and clockwise/anticlockwise rotation), rapid transitions and dynamic responses without needing power input, on the contrary extracting power from ambient. This work may open opportunities for thermo-mechano-electrical transduction, multigait soft energy robotics and waste heat harvesting technologies.


Assuntos
Fontes de Energia Bioelétrica , Fenômenos Biomecânicos , Fontes de Energia Elétrica , Locomoção
2.
ACS Nano ; 12(5): 4512-4520, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29697959

RESUMO

One-dimensional (1D) metallic nanocrystals constitute an important class of plasmonic materials for localization of light into subwavelength dimensions. Coupled with their intrinsic conductive properties and extended optical paths for light absorption, metallic nanowires are prevalent in light-harnessing applications. However, the transverse surface plasmon resonance (SPR) mode of traditional multiply twinned nanowires often suffers from weaker electric field enhancement due to its low degree of morphological curvature in comparison to other complex anisotropic nanocrystals. Herein, simultaneous anisotropic stellation and excavation of multiply twinned nanowires are demonstrated through a site-selective galvanic reaction for a pronounced manipulation of light-matter interaction. The introduction of longitudinal extrusions and cavitation along the nanowires leads to a significant enhancement in plasmon field with reduced quenching of localized surface plasmon resonance (LSPR). The as-synthesized multimetallic nanostartubes serve as a panchromatic plasmonic framework for incorporation of photocatalytic materials for plasmon-assisted solar fuel production.

3.
Small ; 14(7)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29239097

RESUMO

Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology.


Assuntos
Nanotecnologia/métodos , Polímeros/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície
4.
ACS Nano ; 11(10): 10568-10574, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972730

RESUMO

At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (Voc) and short circuit current (Isc) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO2/Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

5.
Nanoscale ; 9(32): 11574-11583, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28770924

RESUMO

Solar energy represents a robust and natural form of resource for environment remediation via photocatalytic pollutant degradation with minimum associated costs. However, due to the complexity of the photodegradation process, it has been a long-standing challenge to develop reliable photocatalytic systems with low recombination rates, excellent recyclability, and high utilization rates of solar energy, especially in the visible light range. In this work, a ternary hetero-nanostructured Ag-CuO-ZnO nanotube (NT) composite is fabricated via facile and low-temperature chemical and photochemical deposition methods. Under visible light irradiation, the as-synthesized ZnO NT based ternary composite exhibits a greater enhancement (∼300%) of photocatalytic activity than its counterpart, Ag-CuO-ZnO nanorods (NRs), in pollutant degradation. The enhanced photocatalytic capability is primarily attributed to the intensified visible light harvesting, efficient charge carrier separation and much larger surface area. Furthermore, our as-synthesised hybrid ternary Ag-CuO-ZnO NT composite demonstrates much higher photostability and retains ∼98% of degradation efficiency even after 20 usage cycles, which can be mainly ascribed to the more stable polar planes of ZnO NTs than those of ZnO NRs. These results afford a new route to construct ternary heterostructured composites with perdurable performance in sewage treatment and photocorrosion suppression.

6.
ACS Appl Mater Interfaces ; 9(31): 26341-26349, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28704040

RESUMO

Surface-enhanced Raman scattering (SERS) spectroscopy affords a rapid, highly sensitive, and nondestructive approach for label-free and fingerprint diagnosis of a wide range of chemicals. It is of great significance to develop large-area, uniform, and environmentally friendly SERS substrates for in situ identification of analytes on complex topological surfaces. In this work, we demonstrate a biodegradable flexible SERS film via irreversibly and longitudinally stretching metal deposited biocompatible poly(ε-caprolactone) film. This composite film after stretching shows surprising phenomena: three-dimensional and periodic wave-shaped microribbons array embedded with a high density of nanogaps functioning as hot-spots at an average gap size of 20 nm and nanogrooves array along the stretching direction. The stretched polymer surface plasmon resonance film gives rise to more than 10 times signal enhancement in comparison with that of the unstretched composite film. Furthermore, the SERS signals with high uniformity exhibit good temperature stability. The polymer SPR film with excellent flexibility and transparency can be conformally attached onto arbitrary nonplanar surfaces for in situ detection of various chemicals. Our results pave a new way for next-generation flexible SERS detection means, as well as enabling its huge potentials toward green wearable devices for point-of-care diagnostics.

7.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27758002

RESUMO

One-pot electroless galvanic cell deposition of a 3D hierarchical semiconductor-metal-semiconductor interlaced nanoarray is demonstrated. The fabricated 3D photoanode deviates from the typical planar geometry, and aims to optimize the effective surface area for light harvesting and long-range charge transfer-collection pathways.

8.
Angew Chem Int Ed Engl ; 55(35): 10326-30, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27416988

RESUMO

We present a room temperature topotactic consolidation of cobalt and zinc constituents into monocrystalline CoZn hydroxide nanosheets, by a localized corrosion of zinc foils with cobalt precursors. By virtue of similar lattice orientation and structure coordination, the hybrid hydroxides amalgamate atomically without phase separation. Importantly, this in situ growth strategy, in combination with configurable percolated nanosheets, renders a high areal density of catalytic sites, immobilized structures, and conductive pathways between the nanosheets and underlying foils-all of which allow monocrystalline CoZn hydroxide nanosheet materials to function as effective electrodes for electrochemical oxygen evolution reactions. This convenient and eco-friendly topotactical transformation approach facilitates high-quality single crystal growth with improved multiphase purity and homogeneity, which can be extended to other transition metals for the fabrication of advanced functional nanocomposites.

9.
ACS Nano ; 9(7): 7661-70, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26122026

RESUMO

Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...