Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 178: 109986, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673479

RESUMO

Hierarchically macro-/mesoporous γ-Al2O3 (HMMA) was synthesized and characterized by various analytical techniques. The results indicated that HMMA possessed macropores (∼0.45 µm) and mesopores (∼10.6 nm) with a large surface area (∼542 m2 g-1). The absorption behaviors of Mo and Re with HMMA were investigated. The maximum static absorption capacity could reach about 250 mg Mo per g HMMA. The absorption equilibrium can be attained quickly within 10 mins. At initial Mo ions concertation of 10,000 mg L-1, the breakthrough capacity was determined to be around 200 mg Mo per g HMMA. Additional, absorption mechanism results indicated that Mo ions reacts strongly with a hydroxyl on the surface of γ-Al2O3 and an adjacent Al atom, simultaneously. A 9.15 mCi (339 MBq) 99Mo generator was prepared and evaluated its performance for over one week. The recovery of 99mTc could reach about 89% with favorable radionuclidic, radiochemical and chemical purity for nuclear medicine application. HMMA has a potential application prospect for the preparation of low specific activity (LSA) 99Mo/99mTc generator.

2.
Inorg Chem ; 58(1): 603-609, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30565939

RESUMO

Here, we propose the use of carboxyl-functionalized ionic liquid, [Hbet][Tf2N], to separate the fission products from spent nuclear fuels. This innovative method allows the selective dissolution of neutron poisons, lanthanides oxide, as well as some fission products with high yield, leaving most of the UO2 matrix and minor actinides behind in the spent nuclear fuel and accomplishing the actinides recovery as a group. Water-saturated [Hbet][Tf2N] can dissolve lanthanides oxide from simulated spent nuclear fuel with a dissolution ratio of 100% at 40 °C. However, the dissolution of uranium is almost negligible (<1%) under the same conditions. This big difference in dissolution provides a novel separation approach to spent nuclear fuel recycling and may open new perspectives for spent nuclear fuel reprocessing. The recovery of Nd and U from metal-loaded ionic liquids and the recyclability of the ionic liquid [Hbet][Tf2N] have also been investigated. Furthermore, a U/ x value related to the lattice energy U of metal compound M xO y is used to elaborate the solubility. This work represents the first case for efficient fission products removal by selective dissolution, avoiding the complete dissolution of spent nuclear fuel, the producing of the large high-level radioactive waste, and reducing environmental hazards.

3.
Phys Chem Chem Phys ; 18(1): 119-25, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26573993

RESUMO

Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls.

4.
Phys Chem Chem Phys ; 17(20): 13228-34, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25920667

RESUMO

Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...