Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100878, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38475995

RESUMO

Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.

2.
Ecol Evol ; 14(2): e10908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327684

RESUMO

The variation of plant traits is closely related to the trade-offs between resource acquisition and conservation, as well as the accumulation of biomass. However, there has been a lack of comprehensive insights into the variation patterns, phylogenetic conservatism, and covariation with biomass allocation of root system architecture in desert areas. We examined the root systems of 47 annual ephemeral species and evaluated their biomass allocation and six key root system architecture traits. Our results indicated that the variation in root traits mainly originated from interspecific variation (48.78%-99.76%), but intraspecific variation should not be ignored as to why the contribution rate of root tissue density (RTD) reached 51.22%. The six root traits were mainly loaded on the first and second axes of the principal component analysis (PCA), these traits mainly vary along two dimensions. The highest interspecific variation is in RTD (51.63%) and the lowest in topological index (TI; 5.92%). The intraspecific variation value and range of specific root length (SRL), specific root area (SRA), and RTD were significantly higher than TI (p < .05), and they are not limited by phylogenetic relationships (0< K < 1, p > .05). The SRA is positively correlated with SRL (r = .72, p < .001) and negatively correlated with RTD (r = -.57, p < .05). The LMF is positively correlated with SRL, and SRA demonstrated the coordination between water consumption and acquisition. The positive correlation between RMF and MRD indicated the coordination of root carbon investment with exploring soil vertical space. The multi-dimensional variation of root traits, divergence of RTDs, and convergence of TI are important ecological strategies for annual short-lived plants to adapt to heterogeneous desert habitats. Meanwhile, these plants achieve optimal access to scarce resources through the high plasticity of resource acquisition (e.g., SRL and SRA) and conservation traits (e.g., RTD), as well as the trade-offs between them and organ mass fraction.

3.
Bot Stud ; 64(1): 33, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017242

RESUMO

BACKGROUND: Leaf morphology and epidermal characters are important for phylogenetic and taxonomic studies of many plants, but there is currently insufficient data to use them to help distinguish species of Gagea, which is a taxonomically difficult genus mainly due to polyploidy and hybridization. Therefore, leaf morphology and epidermal characters of Gagea were studied to assess the characters that can be used to elucidate the taxonomy and systematics of 14 species of Gagea collected in Xinjiang, China. Using light microscopy (LM), six qualitative and three quantitative leaf epidermal anatomical characters were examined for both the adaxial and abaxial surfaces. Hierarchical cluster analysis (HCA) was employed to reveal the similarities based on leaf morphology and epidermal characters of the investigated species. RESULTS: Basal leaf of these species can be terete or flat, and it is triangle, flat, or circular in transverse section. Anticlinal wall patterns of the leaf epidermal cells were straight and sinuous, and only three species had epidermal hairs. Shape of long cells varies, ranging from quadrangular to irregular. HCA revealed that the 14 species could be divided into two groups. Group A was arranged into three subgroups (A1, A2 and A3), based on the Euclidean distance of 6.96. Subgroup A1 consisted of three species with indumentum; subgroup A2 had four species with sinuous type anticlinal walls; and subgroup A3 comprised of two species with a fistulose basal leaf. Group B included five species with short cells. CONCLUSIONS: Leaf morphology and epidermal characters did not differ significantly among populations of the same species in Gagea, whereas they differ significantly among species. Thus, leaf morphology and epidermal characters provide diagnostic information for differentiating G. nigra and G. filiformis; G. altaica, G. jensii and G. alberti, which are morphologically similar species.

4.
Front Plant Sci ; 14: 1267714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034578

RESUMO

Introduction: Fruit wings serve various ecological functions, including facilitating wind dispersal, providing physical protection to seeds, and regulating seed germination. While many studies have reported the role of fruit wings in plants, little is known about their protective function during fruit development. Methods: In this study, winged fruits damaged by insects in natural populations of three Zygophyllum species (Z. potaninii, Z. lehmannianum and Z. macropterum) were investigated. We measured and compared the percentage of damaged winged fruits, seed set, seed mass, seed germination, and seedling growth of different insect herbivory categories. Results: The results revealed that the percentage of winged fruits with damaged wings only (low predation) was significantly higher than that of with damaged both fruit wings and fruit bodies (high predation). Furthermore, winged fruits with low predation had significant higher seed set, seed mass, seed germination, and dry mass and relative growth rate (RGR) in the seedlings which grown from the seeds, than that from winged fruits with high predation. Discussion: These results demonstrate that the presence of the fruit wings may provide protection for the seeds to alleviate harm from insect predation before dispersal. These findings provide new insights into the function of fruit wings and the reproductive strategies of desert plants.

5.
Plants (Basel) ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653867

RESUMO

Among the diaspores of angiosperms an inflated ovary (IO) is a novel morphological trait, but no studies have evaluated its effects on dispersal. The primary aim of this study was to determine the effect of the IO on diaspore dispersal in three cold desert species (Carex physodes, Calligonum junceum, and Sphaerophysa salsula). Various morphological features and the mass of fruits and seeds of each species were measured. The role of an IO in diaspore dispersal by wind and water was determined by comparing responses of intact (inflated) IOs and flattened fruits and seeds. Mature diaspores of three species were dispersed by wind, and the IO significantly increased dispersal distance in the field and at different wind speeds in the laboratory. The floating time on water was greater for inflated fruits than flattened fruits and seeds. Since the seed remains inside the IO until after dispersal is completed, the IO of the three species enhances diaspore dispersal. This is the first detailed study on how an IO increases diaspore/seed dispersal. Furthermore, after primary dispersal by wind, secondary dispersal can occur via wind or surface runoff of water, and each method is enhanced by the presence of an IO.

6.
PhytoKeys ; 225: 53-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213818

RESUMO

Since pollen characters can be used to help distinguish species, our aim was to determine if palynological information has taxonomic significance for Gagea species from Xinjiang, China. Gagea is widely distributed in north temperate and the subtropical zones. The genus has limited taxonomic characteristics and large morphological variation, which results in difficulty of species classification. Pollen morphology of 16 species of this genus was examined comprehensively via light microscope (LM) and scanning electron microscope (SEM). One qualitative and nine quantitative traits of the pollen grains were surveyed, followed by hierarchical cluster analysis (HCA). The pollen grains were bilaterally symmetrical heteropolar monads with a mono-sulcus and they were oblate or peroblate (Polar diameter (P) / Equatorial diameter (E) = 0.36-0.73) in shape and medium to large (P = 17.17-34.64 µm, E = 27.63-81.65 µm) in size. Three types of exine ornamentation were observed: perforate, microreticulate and reticulate cristatum. The HCA divided the 16 species into two groups. This research provides new data on pollen morphology for Gagea (the pollen morphology of eight species was reported for the first time). Pollen morphology also can be used to identify species with similar external morphology, such as G.nigra and G.filiformis. Furthermore, the study of pollen morphology not only provides new data for palynology research on Gagea, but also provides a basis for future classification of this genus.

7.
J Plant Res ; 136(1): 33-45, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36471197

RESUMO

Floral organ movements that ensure autonomous selfing are likely to occur in species that grow in habitats with pollinator scarcity and/or an unpredictable environment. Stamen curvature and temporal flower closure are two important floral behaviors that can influence plant pollination mode and reproductive success. However, both behaviors are rarely reported within a species, and little is known about how these two movements of floral organs ensure reproductive success in an unpredictable early spring environment with few pollinators. The aim of this study was to assess whether stamen curvature and temporal flower closure ensure successful reproduction of Leontice incerta in its cold desert habitat. Flowering phenology, floral traits, stamen curvature patterns and flower visitors were surveyed. The breeding system, capacity and timing for autonomous selfing were estimated by pollination manipulations. The timing of floral opening and closure, and benefits of temporal flower closure were determined. We found that flowering of L. incerta began in late March to early April in two populations in two years, and the yellow flowers had neither nectar nor scent. Floral visitation occurred very rarely, but bees (Colletes sp.) were potential pollinators. Fruit and seed set of open and bagged flowers did not differ significantly from that of self-pollinated or cross-pollinated flowers. However, removal of stamens significantly decreased seed set. Self-pollination occurs when the stamens curve and anthers touch the stigma autonomously, suggesting autonomous selfing assurance of seed production in this self-compatible species. Both fruit and seed set of flowers that were prevented from closing were significantly lower than those of control flowers and closed flowers treated with simulated rain treatment. Therefore, stamen curvature and temporal floral closure can ensure successful sexual reproduction of L. incerta in early spring in the cold desert, where lack of pollinators otherwise may lead to pollination failure.


Assuntos
Polinização , Reprodução , Animais , Abelhas , Flores , Néctar de Plantas , Ásia
8.
Plants (Basel) ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235362

RESUMO

Different organ morphologies determine the manner in which plants acquire resources, and the proportion of biomass of each organ is a critical driving force for organs to function in the future. Regrettably, we still lack a comprehensive understanding of root traits and seedling biomass allocation. Accordingly, we investigated and collected the seedling root morphological traits and biomass allocation of 50 annual ephemeral species to clarify the adaptation to environment. The findings of this study showed that there was a significantly negative correlation between root tissue density (RTD) and root diameter (RD) (p < 0.05), which did not conform to the hypothesis of the one-dimensional root economics spectrum (RES). On this basis, we divided 50 plant species into those rooted in dense or gravelly sand (DGS) or loose sand (LS) groups according to two soil conditions to determine the differences in root strategy and plant strategy between the two groups of plants. Our study revealed that the species rooting DGS tend to adopt a high penetration root strategy. However, the species rooting LS adopt high resource acquisition efficiency. At the whole-plant level, 50 species of ephemerals were distributed along the resource acquisition and conservation axis. Species rooting DGS tend to adopt the conservation strategy of high stem biomass fraction and low resource acquisition efficiency, while species rooting LS tend to adopt the acquisition strategy of high root and leaf biomass fraction and high resource acquisition efficiency. The research results provide a theoretical basis for the restoration and protection of vegetation in desert areas.

9.
Front Microbiol ; 13: 1015588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312972

RESUMO

Nitrogen (N) deposition is a worldwide issue caused by human activity. Long-term deposition of N strongly influences plant productivity and community composition. However, it is still unclear how the microbial community responds to long-term N addition in a desert ecosystem. Therefore, a long-term experiment was conducted in the Gurbantonggut Desert in northwestern China in 2015. Four N addition rates, 0 (CK), 5 (N1), 20 (N2), and 80 (N3) kg N ha-1 yr.-1, were tested and the soil was sampled after 6 years of N addition. High-throughput sequencing (HTS) was used to analyze the soil microbial composition. The HTS results showed that N addition had no significant effect on the bacterial α-diversity and ß-diversity (p > 0.05) but significantly reduced the archaeal ß-diversity (p < 0.05). The fungal Chao1 and ACE indexes in the N2 treatment increased by 24.10 and 26.07%, respectively. In addition, N addition affected the bacterial and fungal community structures. For example, compared to CK, the relative abundance of Actinobacteria increased by 17.80%, and the relative abundance of Bacteroidetes was reduced by 44.46% under N3 treatment. Additionally, N addition also changed the bacterial and fungal community functions. The N3 treatment showed increased relative abundance of nitrate-reducing bacteria (27.06% higher than CK). The relative abundance of symbiotrophic fungi was increased in the N1 treatment (253.11% higher than CK). SOC and NH4 +-N could explain 62% of the changes in the fungal community function. N addition can directly affect the bacterial community function or indirectly through NO3 --N. These results suggest that different microbial groups may have various responses to N addition. Compared with bacteria and fungi, the effect of N addition was less on the archaeal community. Meanwhile, N-mediated changes of the soil properties play an essential role in changes in the microbial community. The results in the present study provided a reliable basis for an understanding of how the microbial community in a desert ecosystem adapts to long-term N deposition.

10.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684225

RESUMO

We compared seed set, mass, and dormancy/germination of seeds from flowers at three points on the style-length continuum [long (LS), intermediate (IS), and short (SS) styles] in Ixiolirion songaricum. The effects of open and hand pollination (self and cross with pollen from upper and lower-level stamens) on seed set, mass, and dormancy/germination were assessed. Most freshly-matured seeds from LS, IS, and SS flowers were dormant, and dormancy was broken under laboratory and field conditions. After-ripened seeds from LS and IS flowers germinated to significantly higher percentages than those from SS flowers. In all pollination treatments, seed set and mass were significantly higher for LS and IS than for SS flowers. Seed set, mass, and germination for LS, IS, and SS flowers were significantly higher in open-pollinated and in cross-pollinated with pollen from upper and lower-level stamens than in self-pollination with pollen from upper- and lower-level stamens. These differences in offspring reproductive traits may be adaptive for I. songaricum in its rainfall-unpredictable environment. This is the first study to demonstrate the association between style length and germination in a species with continuous variation in style length.

11.
AoB Plants ; 12(6): plaa056, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304480

RESUMO

Many studies have been done on the relationship between variation in morphology, dispersal ability and degree of dormancy of heterocarpic species with dimorphic diaspores. However, there are far fewer such studies on species that produce trimorphic diaspores. Our aim was to compare dormancy and germination of achenes from peripheral, intermediate and central positions in the capitulum of the diaspore-trimorphic cold desert annual Asteraceae species Heteracia szovitsii, an important component of plant communities in the cold deserts of NW China. Dormancy breaking/germination responses of the three achene morphs and of seeds isolated from the pericarp were tested in the laboratory using standard procedures, and seedling emergence phenology of the achene morphs was monitored under natural cold desert temperature conditions in an experimental garden with and without supplemental watering. Depth of dormancy of the three achene morphs was peripheral > intermediate > central. Seedlings from the three morphs emerged in spring and in autumn. Cumulative seedling emergence percentage from achenes during 47 months of burial was central > intermediate > peripheral. Central achene morphs emerged over a period of ~12 months after sowing, while intermediate and peripheral achene morphs did so for ~40 and 47 months, respectively. Thus, H. szovitsii exhibits a temporal dispersal strategy. No viable central or intermediate achene morphs were present after 16 and 40 months, respectively, but ~60 % of the non-emerged peripheral achenes morphs were viable after 47 months. Based on our results on diaspore dormancy and those of a previous study of diaspore spatial dispersal of H. szovitsii, we conclude that this species has a high-intermediate-low risk diaspore dispersal/dormancy strategy that likely increases the chances for population persistence over time and space.

12.
Sci Rep ; 10(1): 11142, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636397

RESUMO

Phenotypic plasticity has been studied in diaspore-dimorphic species, but no such study has been done on a diaspore-polymorphic species. Our aim was to determine the effects of abiotic and biotic factors on phenotypic plasticity of the diaspore-polymorphic cold desert annual Ceratocarpus arenarius. Plants produced from dispersal units near the soil surface (a, basicarps) and at the middle (c) and upper (f) parts of the plant canopy were subjected to different levels of soil moisture, nutrient supply and intramorph and intermorph densities. Different levels of these biotic and abiotic factors resulted in significant variation in total plant mass, diaspore mass, mass allocation to stem and reproductive organs and total number and proportion of morphs a, c and f on an individual. The effect of stress on number and mass of a dispersal unit morph varied by treatment, with dispersal unit f having the highest CV and dispersal unit a the lowest. The success of this diaspore polymorphic species in its rainfall-unpredictable environment likely is enhanced by plasticity in production of the different types of diaspores.


Assuntos
Adaptação Fisiológica , Chenopodiaceae/fisiologia , Clima Desértico , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Chenopodiaceae/anatomia & histologia , Chenopodiaceae/crescimento & desenvolvimento , Desidratação , Dispersão de Sementes/fisiologia , Sementes/anatomia & histologia , Sementes/fisiologia
13.
Plant Divers ; 42(2): 74-82, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373765

RESUMO

Crepis desertorum from the Junggar Basin of northern Xinjiang, northwestern China, is described as a new species. Molecular studies indicate that the species is closely related to Crepis frigida. Morphological studies indicate that it is similar to Crepis sancta subsp. bifida but differs from the latter taxon in having glandular hairs on the stem, a flat receptacle and dimorphic achenes. Chromosome features and pollen and achene ultrastructure also are described for the new species.

14.
Appl Plant Sci ; 7(10): e11297, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31667025

RESUMO

PREMISE: Astragalus lehmannianus (Fabaceae) is a vulnerable species found in the cold deserts of northwestern China. We aimed to characterize polymorphic microsatellite loci for A. lehmannianus to support future studies of population genetic dynamics and conservation management of the species. METHODS AND RESULTS: We used next-generation sequencing to detect polymorphic microsatellites. Twenty-five potential microsatellite loci were identified, 12 of which were polymorphic and present in the three study populations of A. lehmannianus. Levels of observed and expected heterozygosities were 0.000-1.000 and 0.000-0.827, respectively. Furthermore, two and five of the 12 developed primers were successfully amplified in two congeneric species, A. arpilobus and A. oxyglottis, respectively. CONCLUSIONS: These newly developed microsatellite markers can be used to determine population diversity and to develop conservation strategies in A. lehmannianus.

15.
Genome Biol ; 18(1): 239, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29284515

RESUMO

BACKGROUND: Organisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different. RESULTS: We sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping. CONCLUSIONS: A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , China , Ecossistema , Variação Genética , Genética Populacional , Genoma de Planta , Genômica , Rios , Seleção Genética
16.
Am J Bot ; 104(12): 1920-1929, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29247027

RESUMO

PREMISE OF THE STUDY: Abiotic environmental factors are often considered to be important in the distribution and maintenance of variation in sexual systems in flowering plants. Associations between sexes and abiotic factors are well documented in dioecious systems, but much less is known about this relationship in other sexually polymorphic systems. Species that are highly variable in sexual expression and habitat distribution can provide insights into the role of abiotic factors in maintaining variation in sexual expression. METHODS: Focusing on a sexually polymorphic species, Geranium transversale, we measured sexual expression at both the flower and the plant level and examined vegetative and floral traits, pollen deposition, and reproductive success. We also tested for correlations between sexual expression and other traits and examined whether and how these traits covaried with abiotic environmental conditions. KEY RESULTS: We identified unique variation of sexual expression in G. transversale. There are four sexual morphs that display different combinations of the three flower types (pistillate, staminate, and perfect). Sexual morphs that are phenotypically more female (i.e., female and gynomonoecious morphs) are found in wetter and milder environments, and flower earlier than morphs that are more male (i.e., hermaphroditic and andromonoecious morphs). Additionally, floral organ size and reproductive success are influenced not only by the flower type but also by the sexual morph of the plant. CONCLUSIONS: Environmental conditions are likely to cause some of the variation in sexual expression found in G. transversale. Both genetic and ecological factors likely contribute to the maintenance of sexual variation in this species.


Assuntos
Flores/anatomia & histologia , Geranium/fisiologia , Sementes/crescimento & desenvolvimento , Flores/fisiologia , Polinização , Reprodução/fisiologia , Solo
17.
Sci Total Environ ; 601-602: 1280-1288, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605846

RESUMO

Desert ecosystems are likely to change in response to global climate change and nitrogen (N) deposition. The effects of increased precipitation and N deposition on plant growth and the N cycle largely depend on N allocation and N recovery efficiency in the plant-soil ecosystem, but there is limited research on this in desert ecosystems. Here we report results using double-labeled 15NH415NO3 (30 and 60kgNha-1yr-1) as a tracer under ambient (no additional water addition) and enhanced precipitation (60mm water addition) in a Haloxylon ammodendron dominated ecosystem in the Gurbantunggut Desert of Northwest China. Herbaceous plants were a significantly larger sink for added 15N than the H. ammodendron trees, and N retention varied with water and N addition, relative to growing season precipitation. The retention of added 15N varied within the components of H. ammodendron, with the stems retaining most, followed by the assimilation branches. Soil was the dominant sink for added 15N, in which the topsoil and subsoil respond differently to water and N addition over the two-year period. Nitrogen relative recovery percentage in the whole ecosystem ranged from 43% to 61%, lower than average recovery rate in temperate forests; N tracer recovery percentage significantly increased with water addition but decreased with enhanced N deposition. Future N cycling in central Asian deserts will depend on changes in precipitation.


Assuntos
Chenopodiaceae/fisiologia , Ecossistema , Monitoramento Ambiental , Ciclo do Nitrogênio , Mudança Climática , Clima Desértico , Nitrogênio/análise , Água/análise
18.
Am J Bot ; 104(3): 461-467, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28341630

RESUMO

PREMISE OF THE STUDY: It has been hypothesized that two flower types permit flexible allocation of resources to female and male functions, yet empirical evidence for the sex-allocation hypothesis remains scarce in gynomonoecious species. To characterize resource allocation to pistillate and perfect flowers and allocation of perfect flowers between gynomonoecious and hermaphroditic individuals, we examined the flexibility and whether female-biased allocation increases with plant size in the hermaphroditic-gynomonoecious herb Eremurus anisopterus. METHODS: Frequency of gynomonoecious individuals, flower production, and plant size were investigated in different populations. Floral allocation was compared among the three flower types of E. anisopterus. KEY RESULTS: Frequency of gynomonoecious plants varied from 2-17% in nine populations. Only larger plants produced female flowers at the bottom of racemes. Both female and perfect flower production tended to increase proportionately with plant size in gynomonoecious individuals. Female flowers did not produce less biomass than perfect flowers from hermaphroditic or gynomonoecious plants. However, both female and perfect flowers from gynomonoecious individuals had lighter stamen mass, but larger pistil mass, than perfect flowers from hermaphrodites. CONCLUSIONS: Although the prediction of an increase in female flower number with plant size was not observed in E. anisopterus, the flexibility of sex allocation in gynomonoecious species was confirmed in that gynomonoecious individuals had a female-biased floral allocation compared to hermaphroditic individuals. Such comparisons of gynomonoecious to hermaphroditic individuals permit us to unveil a sexual adjustment strategy: flexibility of sexual investments within plants.


Assuntos
Asphodelaceae/fisiologia , Flores/fisiologia , Organismos Hermafroditas/fisiologia , Flores/crescimento & desenvolvimento , Organismos Hermafroditas/crescimento & desenvolvimento , Fenótipo , Reprodução , Processos de Determinação Sexual , Asphodelaceae/crescimento & desenvolvimento
19.
Mol Biol Evol ; 33(2): 394-412, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26516094

RESUMO

Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene-Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae.


Assuntos
Evolução Biológica , Brassicaceae/classificação , Brassicaceae/genética , Genes de Plantas , Fenótipo , Filogenia , Radiação , Brassicaceae/efeitos da radiação , Dosagem de Genes , Perfilação da Expressão Gênica , Transcriptoma
20.
New Phytol ; 201(2): 670-677, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24111788

RESUMO

Gynomonoecy, a sexual system in which plants have both pistillate (female) flowers and perfect (hermaphroditic) flowers, occurs in at least 15 families, but the differential reproductive strategies of the two flower morphs within one individual remain unclear. Racemes of Eremurus anisopterus (Xanthorrhoeaceae) have basal pistillate and distal perfect flowers. To compare sex allocation and reproductive success between the two flower morphs, we measured floral traits, pollinator preferences, and pollen movement in the field. Pollen limitation was more severe in pistillate flowers; bee pollinators preferred to visit perfect flowers, which were also capable of partial self-fertilization. Pollen-staining experiments indicated that perfect flowers received a higher proportion of intra-plant pollen (geitonogamy) than pistillate flowers. Plants with greater numbers of pistillate flowers received more outcross pollen. The differential reproductive success conformed with differential floral sex allocation, in which pistillate flowers produce fewer but larger ovules, resulting in outcrossed seeds. Our flower manipulations in these nectarless gynomonoecious plants demonstrated that perfect flowers promote seed quantity in that they are more attractive to pollinators, while pistillate flowers compensate for the loss of male function through better seed quality. These results are consistent with the outcrossing-benefit hypothesis for gynomonoecy.


Assuntos
Magnoliopsida/fisiologia , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/fisiologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Pólen/metabolismo , Pólen/fisiologia , Polinização , Reprodução , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...