Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1169375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123261

RESUMO

Aims: The purpose of this research was to assess the effect of chlorogenic acid (CGA) in the diet on ileac structure, barrier function, immunological state, and microbial profile of broiler chickens in a high stocking density (HD) environment. Methods: Four hundred and seventy-six male AA broiler chickens were randomly split into four groups, two with a normal stocking density (ND) of fourteen birds per m2 and two with a high stocking density of twenty-two birds per m2. Each of the treatments consisted of five replicates. One of the two ND and HD groups received the usual feed, while the other two were given at 1.5 g/kg CGA as part of their dietary regimen. Results: The ND CGA group showed a greater increase in villus height and villus height/crypt depth compared to the ND group at 35 and 42 days. The HD group experienced a greater elevation in villus height due to CGA supplementation than the HD group across days 28, 35, and 42. At day 42, the HD group saw a decline in OCLN and ZO-1 mRNA expression in the ileum, but CGA was able to restore them. The HD group experienced a greater rise in OCLN mRNA than the control HD group when supplemented with CGA. The expression of TNF-α, IL-1ß, and IL-6 in the ileum was higher in the HD group, and CGA supplementation enhanced this effect. The HD group experienced a greater rise in IL-10 mRNA expression than the control group following the administration of CGA. The HD group showed reduced alpha diversity and an increase in detrimental microbes such as Turicibacter and Shigella in the gut compared to the ND group, while the HD CGA group saw a reduction in Turicibacter, Shigella, and other harmful microbes. These findings reveal that HD stress suppressed the growth of ileac villi, decreased the expression of tight-junction genes, amplified the expression of inflammatory genes, and disturbed the gut microbiota, ultimately leading to increased intestinal permeability. Conclusion: We conclude that when chickens are given dietary CGA, the disruption of the ileac barrier and increased oxidative damage and inflammation due to HD stress are reduced, which increases ileac integrity and the presence of beneficial intestinal bacteria.

2.
Front Immunol ; 14: 1193798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207231

RESUMO

Aims: Immune stress in broiler chickens is characterized by the development of persistent pro-inflammatory responses that contribute to degradation of production performance. However, the underlying mechanisms that cause growth inhibition of broilers with immune stress are not well defined. Methods: A total of 252 1-day-old Arbor Acres(AA) broilers were randomly allocated to three groups with six replicates per group and 14 broilers per replicate. The three groups comprised a saline control group, an Lipopolysaccharide (LPS) (immune stress) group, and an LPS and celecoxib group corresponding to an immune stress group treated with a selective COX-2 inhibitor. Birds in LPS group and saline group were intraperitoneally injected with the same amount of LPS or saline from 14d of age for 3 consecutive days. And birds in the LPS and celecoxib group were given a single intraperitoneal injection of celecoxib 15 min prior to LPS injection at 14 d of age. Results: The feed intake and body weight gain of broilers were suppressed in response to immune stress induced by LPS which is an intrinsic component of the outer membrane of Gram-negative bacteria. Cyclooxygenase-2 (COX-2), a key enzyme that mediates prostaglandin synthesis, was up-regulated through MAPK-NF-κB pathways in activated microglia cells in broilers exposed to LPS. Subsequently, the binding of prostaglandin E2 (PGE2) to the EP4 receptor maintained the activation of microglia and promoted the secretion of cytokines interleukin-1ß and interleukin-8, and chemokines CX3CL1 and CCL4. In addition, the expression of appetite suppressor proopiomelanocortin protein was increased and the levels of growth hormone-releasing hormone were reduced in the hypothalamus. These effects resulted in decreased expression of insulin-like growth factor in the serum of stressed broilers. In contrast, inhibition of COX-2 normalized pro-inflammatory cytokine levels and promoted the expression of Neuropeptide Y and growth hormone-releasing hormone in the hypothalamus which improved the growth performance of stressed broilers. Transcriptomic analysis of the hypothalamus of stressed broilers showed that inhibition of COX-2 activity significantly down-regulated the expression of the TLR1B, IRF7, LY96, MAP3K8, CX3CL1, and CCL4 genes in the MAPK-NF-κB signaling pathway. Conclusion: This study provides new evidence that immune stress mediates growth suppression in broilers by activating the COX-2-PGE2-EP4 signaling axis. Moreover, growth inhibition is reversed by inhibiting the activity of COX-2 under stressed conditions. These observations suggest new approaches for promoting the health of broiler chickens reared in intensive conditions.


Assuntos
Galinhas , Inflamação , Transdução de Sinais , Animais , Celecoxib/farmacologia , Galinhas/crescimento & desenvolvimento , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo
3.
Poult Sci ; 102(5): 102623, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972676

RESUMO

Immune stress exerts detrimental effects on growth performance and intestinal barrier function during intensive animal production with ensuing serious economic consequences. Chlorogenic acid (CGA) is used widely as a feed additive to improve the growth performance and intestinal health of poultry. However, the effects of dietary CGA supplementation on amelioration of the intestinal barrier impairment caused by immune stress in broilers are unknown. This study investigated the effects of CGA on growth performance, intestinal barrier function, and the inflammatory response in lipopolysaccharide (LPS) mediated immune-stressed broilers. Three hundred and twelve 1-day-old male Arbor Acres broilers were divided randomly into 4 groups with 6 replicates of thirteen broilers. The treatments included: i) saline group: broilers injected with saline and fed with basal diet; ii) LPS group: broilers injected with LPS and fed with basal diet; iii) CGA group: broilers injected with saline and feed supplemented with CGA; and iv) LPS+CGA group: broilers injected with LPS and feed supplemented with CGA. Animals in the LPS and LPS+CGA groups were injected intraperitoneally with an LPS solution prepared with saline from 14 d of age for 7 consecutive days, whereas broilers in the other groups were injected only with saline. LPS induced a decrease in feed intake of broilers during the stress period, but CGA effectively alleviated this decrease. Moreover, CGA inhibited the reduction of villus height and improved the ratio of villus height to crypt depth in the duodenum of broilers 24 and 72 h after LPS injection. In addition, dietary CGA supplementation significantly restored the expression of cation-selective and channel-forming Claudin2 protein 2 h after LPS injection in the ileum. LPS enhanced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the small intestine, but this enhancement was blocked by CGA supplementation. The expression of interleukin-10 (IL-10) increased with LPS injection and CGA promoted the production of IL-10. CGA addition downregulated the expression of intestinal interleukin-6 (IL-6) of broilers under normal rearing conditions. However, CGA supplementation upregulated the expression of IL-6 of broilers 72 h after LPS injection. The data demonstrate that dietary supplementation with CGA alleviates intestinal barrier damage and intestinal inflammation induced by LPS injection during immune stress thereby improving growth performance of broilers.


Assuntos
Interleucina-10 , Lipopolissacarídeos , Masculino , Animais , Lipopolissacarídeos/toxicidade , Galinhas/fisiologia , Ácido Clorogênico/farmacologia , Interleucina-6 , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise
4.
Animals (Basel) ; 13(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36670842

RESUMO

Chlorogenic acids (CGA) are widely used as feed additives for their ability to improve growth performance and intestinal health in poultry. However, whether dietary CGAs could reverse the impaired intestinal condition caused by high stocking density (HD) in broiler chickens is unknown. We determined the effect of dietary CGA on growth, serum antioxidant levels, jejunum barrier function, and the microbial community in the cecum of broilers raised under normal (ND) or HD conditions. HD stress significantly decreased growth and body weight, which was restored by CGA. The HD group showed increased serum malondialdehyde, an oxidative byproduct, and decreased SOD and GSH-Px activity. CGA reduced malondialdehyde and restored antioxidant enzyme activity. HD stress also significantly decreased jejunal villus length and increased crypt depth. Compared with ND, the expression of tight-junction genes was significantly decreased in the HD group, but this decrease was reversed by CGA. HD also significantly upregulated TNF-α. Compared with ND, the cecal microbiota in the HD group showed lower alpha diversity with increases in the harmful bacteria Turicibacter and Shigella. This change was altered in the HD + CGA group, with enrichment of Blautia, Akkermansia, and other beneficial bacteria. These results demonstrated that HD stress decreased serum antioxidant capacity, inhibited the development of jejunal villi, and downregulated expression of tight-junction genes, which increased intestinal permeability during the rapid growth period (21 to 35 days). Dietary CGA enhanced antioxidant capacity, improved intestinal integrity, and enhanced beneficial gut bacteria in chickens raised under HD conditions.

5.
Vet Sci ; 9(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288195

RESUMO

The study was conducted to evaluate the effects of dietary chlorogenic acid supplementation on the growth performance, antioxidant function, and immune response of broiler breeders exposed to immune stress or high stocking density stress. The test was divided into two stress models. For the immune stress test, 198 birds were distributed into three experimental treatments with six replicates per treatment. The treatments were: (1) saline control (birds injected with saline and fed basal diet), (2) LPS group (birds injected with 0.5 mg LPS/kg body weight and fed basal diet), and (3) CGA + LPS group (birds injected with LPS and fed basal diet supplemented with 1 g/kg CGA. LPS was intraperitoneally injected from day 14, and then daily for 10 days. For the high stocking density stress model, 174 birds were distributed into three experimental treatments with six replicates per treatment. The treatments were: (1) controls (birds fed basal diet and raised at a stocking density of 14 broilers per m2), (2) high-density group (birds fed with basal diet and raised at a stocking density of 22 broilers per m2), and (3) high density + CGA group (birds fed with 1 g/kg CGA and raised at a stocking density of 22 broilers per m2). Results showed that LPS injection and high stocking density significantly decreased the body weight and feed intake of broiler breeders, while CGA supplementation increased feed intake of broiler breeders under LPS injection and high stocking density stress. Moreover, LPS injection and high stocking density increased the concentration of corticosterone in serum, and CGA addition remarkably downregulated serum corticosterone levels. The GSH level decreased with LPS injection and CGA increased the GSH concentration in the intestines of immune-stressed broiler breeders. LPS injection promoted the production of circulating proinflammatory cytokines (serum IL-1ß and TNF-α) by 72 h after LPS injection. Dietary supplementation with CGA prevented the increase in serum TNF-α caused by LPS. These results suggest that dietary inclusion of 1 g/kg CGA could increase the feed intake of broiler breeders and alleviate the effects of inflammatory mediator stress and exposure to high stocking density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...