Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632379

RESUMO

The study of early human embryogenesis has relied on the use of blastocysts donated to research or simple stem cell culture systems such as pluripotent and trophoblast stem cells, which have been seminal in shedding light on many key developmental processes. However, simple culture systems lack the necessary complexity to adequately model the spatiotemporal, cellular and molecular dynamics occurring during the early phases of embryonic development. As such, an in vitro model of the human blastocyst is advantageous in many aspects to decipher human embryogenesis. Here we describe a step-by-step protocol for the generation of induced blastoids (iBlastoids), an in vitro integrated model of the human blastocyst derived via somatic reprogramming. This protocol details the workflow for reprogramming of human dermal fibroblasts and subsequent generation of iBlastoids using the reprogramming intermediates, which together takes ~27 days (21 days for reprogramming and 6 days for iBlastoid generation). We also discuss several characterization/functional assays that can be used on the iBlastoids. We believe that a person trained in cell culture with ~1 year of experience with human somatic cell and reprogramming/cell differentiation assays would be able to perform this protocol. In short, the iBlastoids present an alternative tool as a model to the blastocyst to facilitate the scientific community in the exploration of early human development.

2.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
3.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315523

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Células-Tronco , Antivirais/farmacologia , Antivirais/uso terapêutico , Pulmão
4.
Nat Protoc ; 17(12): 2739-2759, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241724

RESUMO

During early mammalian embryonic development, trophoblast cells play an essential role in establishing cell-cell interactions at the maternal-fetal interface to ensure a successful pregnancy. In a recent study, we showed that human fibroblasts can be reprogrammed into induced trophoblast stem (iTS) cells by transcription factor-mediated nuclear reprogramming using the Yamanaka factors OCT4, KLF4, SOX2 and c-MYC (OKSM) and a selection of TS cell culture conditions. The derivation of TS cells from human blastocysts or first-trimester placenta can be limited by difficulties in obtaining adequate material as well as ethical implications. By contrast, the described approach allows the generation of iTS cells from the adult cells of individuals with diverse genetic backgrounds, which are readily accessible to many laboratories around the world. Here we describe a step-by-step protocol for the generation and establishment of human iTS cells directly from dermal fibroblasts using a non-integrative reprogramming method. The protocol consists of four main sections: (1) recovery of cryopreserved human dermal fibroblasts, (2) somatic cell reprogramming, (3) passaging of reprogramming intermediates and (4) derivation of iTS cell cultures followed by routine maintenance of iTS cells. These iTS cell lines can be established in 2-3 weeks and cultured long term over 50 passages. We also discuss several characterization methods that can be performed to validate the iTS cells derived using this approach. Our protocol allows researchers to generate patient-specific iTS cells to interrogate the trophoblast and placenta biology as well as their interactions with embryonic cells in health and diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Trofoblastos , Feminino , Humanos , Gravidez , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Fibroblastos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Trofoblastos/metabolismo
5.
bioRxiv ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36172136

RESUMO

SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary: Rational treatment strategies for SARS-CoV-2 derived from human PSC models.

6.
Toxicology ; 472: 153180, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35430322

RESUMO

In this study, A549/PQ cells with moderate resistance to paraquat (PQ) were obtained by treating A549 cells with PQ, their growth rate was slowed down, the accumulation concentration of PQ and the levels of growth inhibition, injury and early apoptosis induced by PQ were significantly lower than those of parental A549 cells. Microarray screening and RT-qPCR detection found that Synaptotagmin-1 (SYT1) expression in drug-resistant cells was significantly increased, and PQ further enhanced its expression. After inhibiting SYT1 expression in A549/PQ cells, cell viability, intracellular PQ concentration and the expression of Bcl-2, SNAP25 and RAB26 were significantly reduced, while the mortality, early apoptosis rate and Bax expression were significantly increased. In vivo experiments also further showed that PQ promoted the expression of SYT1, SNAP25 and RAB26 in PQ-poisoned mice; when inhibiting SYT1 expression, PQ concentration in lung tissues was significantly increased, and the levels of lung injury and apoptosis were also significantly enhanced, while the expression of SNAP25 and RAB26 was significantly reduced. This indicates that PQ poisoning leads to compensatory up-regulation of vesicle transport related proteins such as SYT1 in vivo, thereby promoting PQ transmembrane transport, and then reducing the pulmonary accumulation of PQ and PQ-caused lung injury.


Assuntos
Lesão Pulmonar , Paraquat , Células A549 , Animais , Apoptose , Proteínas de Transporte/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Paraquat/toxicidade
7.
Methods Mol Biol ; 2416: 39-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34870829

RESUMO

Generating patient-specific stem cells representing the onset of development has become possible since the discovery of somatic cell reprogramming into induced pluripotent stem cells. However, human pluripotent stem cells are generally cultured in a primed pluripotent state: they are poised for differentiation and represent a stage of development corresponding to post-implantation epiblast. Here, we describe a protocol to reprogram human fibroblasts into naive pluripotent stem cells by overexpressing the transcription factors OCT4, SOX2, KLF4, and c-MYC using Sendai viruses. The resulting cells represent an earlier stage of development that corresponds to pre-implantation epiblast. We also discuss validation methods for human naive pluripotent stem cells.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Fibroblastos , Camadas Germinativas , Humanos , Células-Tronco Pluripotentes Induzidas , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
8.
Nature ; 591(7851): 627-632, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33731926

RESUMO

Human pluripotent and trophoblast stem cells have been essential alternatives to blastocysts for understanding early human development1-4. However, these simple culture systems lack the complexity to adequately model the spatiotemporal cellular and molecular dynamics that occur during early embryonic development. Here we describe the reprogramming of fibroblasts into in vitro three-dimensional models of the human blastocyst, termed iBlastoids. Characterization of iBlastoids shows that they model the overall architecture of blastocysts, presenting an inner cell mass-like structure, with epiblast- and primitive endoderm-like cells, a blastocoel-like cavity and a trophectoderm-like outer layer of cells. Single-cell transcriptomics further confirmed the presence of epiblast-, primitive endoderm-, and trophectoderm-like cells. Moreover, iBlastoids can give rise to pluripotent and trophoblast stem cells and are capable of modelling, in vitro, several aspects of the early stage of implantation. In summary, we have developed a scalable and tractable system to model human blastocyst biology; we envision that this will facilitate the study of early human development and the effects of gene mutations and toxins during early embryogenesis, as well as aiding in the development of new therapies associated with in vitro fertilization.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Técnicas de Cultura de Células , Reprogramação Celular , Fibroblastos/citologia , Modelos Biológicos , Transcriptoma , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
9.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
10.
J Cell Biochem ; 117(4): 872-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26358524

RESUMO

Nephrotoxicity induced by chemicals such as paraquat (PQ) is a common clinical phenomenon; therefore, searching for drugs with renal protective effect is of a great practical significance. Our previous investigation found that cycloartenyl ferulate (CF) can antagonize the cytotoxic effect of PQ, and recent studies also revealed a variety of bioactivities of CF. However, specific molecular mechanisms underlying the protective effect of CF have not been explored yet. HPLC detection of PQ content indicated that CF reduced PQ accumulation in HK-2 cells and thereby improved cell survival. Western blot results showed that both PQ and CF did not affect the expression of ABCB1; however, while PQ suppressed the expression of ABCC1, CF upregulated ABCC1 expression and thereby reversed the inhibitory effect of PQ on ABCC1 expression. Meanwhile, HK-2 cells did not express ABCG2. When the expression of ABCC1 was knocked down with siRNA, the inhibitory effect of CF on intracellular PQ accumulation was blocked. Further flow cytometric analysis showed that while PQ significantly induced the appearance of sub-G1 apoptotic peak in cells, CF evidently inhibited apoptosis. TUNEL-DAPI double-staining also detected that PQ significantly induced the occurrence of DNA fragmentation in cells, whereas CF effectively inhibited the effect of PQ. Further results showed that ABCC1 siRNA effectively abolished the protective effect of CF on PQ-induced apoptosis. Taken together, these data demonstrated that in HK-2 cells, CF could antagonize PQ-induced toxicity with the involvement of regulatiion of ABCC1 protein expression, which provides a new strategy for treatments of nephrotoxicity.


Assuntos
Ácidos Cumáricos/farmacologia , Citotoxinas/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Citotoxinas/toxicidade , Fragmentação do DNA/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Paraquat/toxicidade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...