Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673843

RESUMO

Neutrophil-myeloperoxidase (MPO) is a heme-containing peroxidase which produces excess amounts of hypochlorous acid during inflammation. While pharmacological MPO inhibition mitigates all indices of experimental colitis, no studies have corroborated the role of MPO using knockout (KO) models. Therefore, we investigated MPO deficient mice in a murine model of colitis. Wild type (Wt) and MPO-deficient mice were treated with dextran sodium sulphate (DSS) in a chronic model of experimental colitis with three acute cycles of DSS-induced colitis over 63 days, emulating IBD relapse and remission cycles. Mice were immunologically profiled at the gut muscoa and the faecal microbiome was assessed via 16S rRNA amplicon sequencing. Contrary to previous pharmacological antagonist studies targeting MPO, MPO-deficient mice showed no protection from experimental colitis during cyclical DSS-challenge. We are the first to report drastic faecal microbiota shifts in MPO-deficient mice, showing a significantly different microbiome profile on Day 1 of treatment, with a similar shift and distinction on Day 29 (half-way point), via qualitative and quantitative descriptions of phylogenetic distances. Herein, we provide the first evidence of substantial microbiome shifts in MPO-deficiency, which may influence disease progression. Our findings have significant implications for the utility of MPO-KO mice in investigating disease models.


Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Knockout , Peroxidase , Animais , Peroxidase/metabolismo , Peroxidase/genética , Camundongos , Colite/microbiologia , Colite/induzido quimicamente , Colite/genética , Fezes/microbiologia , Deleção de Genes , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL
2.
Eur J Immunol ; 53(7): e2250163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137164

RESUMO

The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.


Assuntos
Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Dieta , Microbioma Gastrointestinal/fisiologia , Bactérias , Antibacterianos , Vesículas Extracelulares/metabolismo
3.
Sci Rep ; 10(1): 18295, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106529

RESUMO

Chronic kidney disease (CKD) of unknown etiology (CKDu) mostly affects agricultural communities in Central America, South Asia, Africa, but likely also in North America and Australia. One such area with increased CKDu prevalence is the Medawachchiya District Secretariat Division of the Anuradhapura District in the North Central Province of Sri Lanka. Recent research has focused on the presence of various microbial pathogens in drinking water as potential causal or contributing factors to CKDu, yet no study to date has performed a more comprehensive microbial and water chemistry assessment of household wells used for domestic water supply in areas of high CKDu prevalence. In this study, we describe the chemical composition and total microbial content in 30 domestic household wells in the Medawachchiya District Secretariat Division. While the chemical composition in the tested wells mostly lies within standard drinking water limits, except for high levels of fluoride (F), magnesium (Mg), sodium (Na), chloride (Cl) and calcium (Ca) in some samples, we find a frequent presence of cyanotoxin-producing Microcystis, confirming earlier studies in Sri Lanka. Since the total microbial content of drinking water also directly influences the composition of the human gut microbiome, it can be considered an important determinant of health. Several bacterial phyla were previously reported in the gut microbiome of patients with CKD. Using these bacteria phyla to define operational taxonomic units, we found that these bacteria also occur in the microbiome of the sampled well water. Based on available environmental data, our study demonstrates associations between the abundances of these bacteria with geographical distribution, well water temperature and likely fertilizer use in the local surface water catchment area of the individual household wells. Our results reinforce the recommendation that household wells with stagnant or infrequently used water should be purged prior to use for drinking water, bathing and irrigation. The latter is suggested because of the reported potential accumulation of bacterial toxins by agricultural crops. The observation that bacteria previously found in chronic kidney disease patients are also present in household wells requires a more detailed systematic study of both the human gut and drinking water microbiomes in CKDu patients, in relation to disease prevalence and progression.


Assuntos
Bactérias/classificação , Água Potável/análise , Insuficiência Renal Crônica/epidemiologia , Poluentes Químicos da Água/análise , Bactérias/isolamento & purificação , Progressão da Doença , Água Potável/química , Água Potável/microbiologia , Microbioma Gastrointestinal , Humanos , Filogenia , Prevalência , Insuficiência Renal Crônica/etiologia , Sri Lanka/epidemiologia , Microbiologia da Água , Poços de Água
4.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
5.
Circulation ; 135(10): 964-977, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927713

RESUMO

BACKGROUND: Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. METHODS: Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess-treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. RESULTS: We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens. Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1, a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. CONCLUSIONS: A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut microbiota, the short-chain fatty acid acetate. Acetate effected several molecular changes associated with improved cardiovascular health and function.


Assuntos
Acetato de Desoxicorticosterona/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/prevenção & controle , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Pressão Sanguínea/efeitos dos fármacos , Acetato de Desoxicorticosterona/uso terapêutico , Fibras na Dieta/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Fibrose , Trato Gastrointestinal/microbiologia , Hipertensão/patologia , Hipertensão/veterinária , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Transcriptoma/efeitos dos fármacos
6.
J Autoimmun ; 73: 120-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27427404

RESUMO

Environmental factors contribute to development of autoimmune diseases. For instance, human autoimmune arthritis can associate with intestinal inflammation, cigarette smoking, periodontal disease, and various infections. The cellular and, molecular pathways whereby such remote challenges might precipitate arthritis or flares remain unclear. Here, we used a transfer model of self-reactive arthritis-inducing CD4(+) cells from KRNtg mice that, upon transfer, induce a very mild form of autoinflammatory arthritis in recipient animals. This model enabled us to identify external factors that greatly aggravated disease. We show that several distinct challenges precipitated full-blown arthritis, including intestinal inflammation through DSS-induced colitis, and bronchial stress through Influenza infection. Both triggers induced strong IL-17 expression primarily in self-reactive CD4(+) cells in lymph nodes draining the site of inflammation. Moreover, treatment of mice with IL-1ß greatly exacerbated arthritis, while transfer of KRNtg CD4(+) cells lacking IL-1R significantly reduced disease and IL-17 expression. Thus, IL-1ß enhances the autoaggressive potential of self-reactive CD4(+) cells, through increased Th17 differentiation, and this influences inflammatory events in the joints. We propose that diverse challenges that cause remote inflammation (lung infection or colitis, etc.) result in IL-1ß-driven Th17 differentiation, and this precipitates arthritis in genetically susceptible individuals. Thus the etiology of autoimmune inflammatory arthritis likely relates to diverse triggers that converge to a common pathway involving IL-1ß production and Th17 cell distribution.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Interleucina-1beta/metabolismo , Espondilartrite/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Artrite Reumatoide/genética , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/toxicidade , Predisposição Genética para Doença , Vírus da Influenza A/imunologia , Interleucina-17/metabolismo , Articulações/imunologia , Klebsiella pneumoniae/imunologia , Pneumopatias/imunologia , Pneumopatias/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Células Th17/metabolismo
7.
Arthritis Rheumatol ; 68(4): 1026-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26501485

RESUMO

OBJECTIVE: Antibody-mediated autoimmunity involves cognate interactions between self-reactive T cells and B cells during germinal center (GC) reactions. The aim of this study was to determine the role of essential follicular helper T (Tfh) cell molecules (CXCR5, signaling lymphocytic activation molecule-associated protein) on autoreactive CD4+ cells and the role of certain environmental influences that may determine GC-driven autoantibody production and arthritis development. METHODS: We transferred self-reactive CD4+ cells from KRN-Tg mice into recipient mice, which induced autoantibodies and autoinflammatory arthritis. This model allowed manipulation of environmental effects, such as inflammation, and use of transferred cells that were genetically deficient in important Tfh cell-associated molecules. RESULTS: A deficiency of signaling lymphocytic activation molecule-associated protein (SAP) in CD4+ cells from KRN-Tg mice completely protected against arthritis, indicating that stable T cell-B cell interactions are required for GC formation, autoantibody production, and arthritis induction. In contrast, a CXCR5 deficiency in CD4+ cells from KRN-Tg mice still induced disease when these cells were transferred into wild-type mice, suggesting that T cell help for B cells could rely on other migration mechanisms. However, various manipulations influenced this system, including elimination of bystander effects through use of CD28(-/-) recipient mice (reduced disease) or use of inflammation-inducing Freund's complete adjuvant (progression to arthritis). We also examined the capacity of preexisting GCs with a nonautoimmune specificity to co-opt autoimmune T cells and observed no evidence for any influence. CONCLUSION: In addition to the quality and quantity of cognate CD4+ cell help, external factors such as inflammation and noncognate CD4+ cell bystander activation trigger autoimmunity by shaping events within autoimmune GC responses. SAP is an essential molecule for autoimmune antibody production, whereas the importance of CXCR5 varies depending on the circumstances.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/biossíntese , Meio Ambiente , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Artrite Psoriásica/imunologia , Artrite Reumatoide/genética , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Centro Germinativo/citologia , Glucose-6-Fosfato Isomerase/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR5/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária
8.
Nat Commun ; 6: 7320, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26102221

RESUMO

Asthma is prevalent in Western countries, and recent explanations have evoked the actions of the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or acetate-feeding led to marked suppression of allergic airways disease (AAD, a model for human asthma), by enhancing T-regulatory cell numbers and function. Acetate increases acetylation at the Foxp3 promoter, likely through HDAC9 inhibition. Epigenetic effects of fibre/acetate in adult mice led us to examine the influence of maternal intake of fibre/acetate. High-fibre/acetate feeding of pregnant mice imparts on their adult offspring an inability to develop robust AAD. High fibre/acetate suppresses expression of certain genes in the mouse fetal lung linked to both human asthma and mouse AAD. Thus, diet acting on the gut microbiota profoundly influences airway responses, and may represent an approach to prevent asthma, including during pregnancy.


Assuntos
Acetatos/metabolismo , Asma/metabolismo , Dieta , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Linfócitos T Reguladores/imunologia , Acetatos/farmacologia , Acetilação/efeitos dos fármacos , Animais , Asma/imunologia , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Feminino , Fatores de Transcrição Forkhead/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Regiões Promotoras Genéticas , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...