Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514812

RESUMO

With the accelerated growth of the UAV industry, researchers are paying close attention to the flight safety of UAVs. When a UAV loses its GPS signal or encounters unusual conditions, it must perform an emergency landing. Therefore, real-time recognition of emergency landing zones on the ground is an important research topic. This paper employs a semantic segmentation approach for recognizing emergency landing zones. First, we created a dataset of UAV aerial images, denoted as UAV-City. A total of 600 UAV aerial images were densely annotated with 12 semantic categories. Given the complex backgrounds, diverse categories, and small UAV aerial image targets, we propose the STDC-CT real-time semantic segmentation network for UAV recognition of emergency landing zones. The STDC-CT network is composed of three branches: detail guidance, small object attention extractor, and multi-scale contextual information. The fusion of detailed and contextual information branches is guided by small object attention. We conducted extensive experiments on the UAV-City, Cityscapes, and UAVid datasets to demonstrate that the STDC-CT method is superior for attaining a balance between segmentation accuracy and inference speed. Our method improves the segmentation accuracy of small objects and achieves 76.5% mIoU on the Cityscapes test set at 122.6 FPS, 68.4% mIoU on the UAVid test set, and 67.3% mIoU on the UAV-City dataset at 196.8 FPS on an NVIDIA RTX 2080Ti GPU. Finally, we deployed the STDC-CT model on Jetson TX2 for testing in a real-world environment, attaining real-time semantic segmentation with an average inference speed of 58.32 ms per image.

2.
Chaos ; 26(6): 063106, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27368771

RESUMO

We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.

3.
Chaos ; 24(4): 043114, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554034

RESUMO

We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...