Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(1): 262-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845842

RESUMO

Sclerotinia sclerotiorum causes white mold (also called stem rot, Sclerotinia blight, etc.) in many economically important plants. It is a notorious soilborne fungal pathogen due to its wide host range and ability to survive in soil for long periods of time as sclerotia. Although host-induced gene silencing (HIGS) was recently demonstrated to be an effective method for controlling white mold, limited gene targets are available. Here, using a forward genetics approach, we identified a RAS-GTPase activating protein, SsGAP1, which plays essential roles in sclerotia formation, compound appressoria production and virulence. In parallel, as revealed by our knockout analysis, the SsGAP1 ortholog in Botrytis cinerea, BcGAP1, plays similar roles in fungal development and virulence. By knocking down SsRAS1 and SsRAS2, we also revealed that both SsRAS1 and SsRAS2 are required for vegetative growth, sclerotia development, compound appressoria production and virulence in S. sclerotiorum. Due to the major roles these RAS signalling components play in Sclerotiniaceae biology, they can be used as HIGS targets to control diseases caused by both S. sclerotiorum and B. cinerea. Indeed, when we introduced HIGS constructs targeting SsGAP1, SsRAS1 and SsRAS2 in Nicotiana benthamiana and Arabidopsis thaliana, we observed reduced virulence. Taken together, our forward genetics gene discovery pipeline in S. sclerotiorum is highly effective in identifying novel HIGS targets to control S. sclerotiorum and B. cinerea.


Assuntos
Arabidopsis , Ascomicetos , Micoses , Botrytis , Arabidopsis/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Pathogens ; 12(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36986301

RESUMO

Magnaporthe oryzae is one of the most devastating pathogenic fungi that affects a wide range of cereal plants, especially rice. Rice blast disease causes substantial economic losses around the globe. The M. oryzae genome was first sequenced at the beginning of this century and was recently updated with improved annotation and completeness. In this review, key molecular findings on the fungal development and pathogenicity mechanisms of M. oryzae are summarized, focusing on fully characterized genes based on mutant analysis. These include genes involved in the various biological processes of this pathogen, such as vegetative growth, conidia development, appressoria formation and penetration, and pathogenicity. In addition, our syntheses also highlight gaps in our current understanding of M. oryzae development and virulence. We hope this review will serve to improve a comprehensive understanding of M. oryzae and assist disease control strategy designs in the future.

3.
Hum Exp Toxicol ; 41: 9603271221125931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36075570

RESUMO

BACKGROUND: As a life-threatening respiratory syndrome, acute lung injury (ALI) is characterized by uncontrollable inflammatory activities. Semaglutide (SEM) has been identified as an effective anti-inflammatory drug in a variety of diseases. This study intended to explore the functional effect and potential mechanisms of SEM in ALI. METHODS: Lipopolysaccharide (LPS) was used to construct an in vivo ALI model based on Sprague-Dawley (SD) rats and an in vitro ALI model based on human pulmonary artery endothelial cells (HPAECs). Hematoxylin & eosin (H&E) staining and ELISA were applied to evaluate the histopathological changes in pulmonary tissues and detect TNF-α and IL-6 levels. RT-qPCR and Western blotting were used to measure gene and protein expressions in pulmonary tissues and cells. HPAEC viability and apoptosis were evaluated by CCK-8 method and flow cytometry methods. RESULTS: Semaglutide pretreatment significantly mitigated pulmonary injury, reduced TNF-α and IL-6 production, and led to a decrease in cleaved caspase-3 level and an increase in Bcl-2 level, suggesting SEM could ameliorate LPS-induced ALI in rats. In vitro, SEM increased the proliferative capability and mitigated inflammation and apoptosis in LPS-stimulated HPAECs. In addition, SEM inhibited HDAC5-mediated NF-κB signaling pathway in HPAECs. HDAC5 overexpression or NF-κB signaling activation could partly impair SEM-mediated protective effects against LPS-induced damage to HPAECs. CONCLUSION: Semaglutide restrains LPS-induced ALI by inhibiting HDAC5/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Peptídeos Semelhantes ao Glucagon , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Histona Desacetilases/uso terapêutico , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/patologia , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Plant Physiol Biochem ; 145: 227-236, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630936

RESUMO

As one type of deubiquitinases (DUBs), ubiquitin-specific proteases (UBPs) play an extensive and significant role in plant life involving the regulation of plant development and stress responses. However, comprehensive studies are still needed to determine the functional mechanisms, which are largely unclear. Here, we summarized recent progress of plant UBPs' functional partners, particularly the molecular mechanisms by which UBPs work with their partners. We believe that functional analyses of UBPs and their partners will provide new insights into protein deubiquitination and lead to a better understanding of the physiological roles of UBPs in plants.


Assuntos
Proteínas de Plantas , Proteases Específicas de Ubiquitina , Ubiquitinação , Proteínas de Plantas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
5.
Acta Biomater ; 90: 112-121, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30980938

RESUMO

Nitric oxide (NO) releasing polymers have been widely applied as biomaterials for a variety of biomedical implants and devices. However, the chemical leaching of NO donors and their byproduct species is almost always observed during the application of polymers doped with NO donors, unless the donor is covalently linked to the polymer. Herein, we report the first NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluorinated copolymer prepared by incorporating a fluorinated S-nitrosothiol as the NO donor. Under physiological conditions, the resulting polymeric films can release NO for 16 days. Importantly, due to both fluorine-fluorine and electrostatic charge interactions between the fluorinated NO donor and the PVDF-HFP copolymer, the total chemical leaching of the fluorinated NO donor and its disulfide product after 9 day was only 0.6% (mol%) of the initial amount of NO donor loaded into the film. These new NO release PVDF-HFP films exhibit antimicrobial and anti-biofilm activities against both Gram positive S. aureus and Gram negative P. aeruginosa strains. The NO-releasing PVDF-HFP polymer can also be coated on Teflon tubing to release NO under physiological conditions for extended time periods. This NO-releasing PVDF-HFP copolymer with greatly reduced chemical leaching could help enhance the biocompatibility and antimicrobial activity of various biomedical devices. STATEMENT OF SIGNIFICANCE: Fluoropolymers have been widely used in creating various biomedical implants and devices. However, nitric oxide (NO) release fluoropolymers have not been well studied to date. Additionally, in the application of biomaterials doped with NO donors, a significant amount of NO donors and their byproducts almost always leach into aqueous environment. We now report an NO releasing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fluoropolymer by incorporating a new fluorinated S-nitrosothiol. The NO release can last for 16 days under physiological conditions. The total chemical leaching was determined to be only 0.6 mol% of the initial S-nitrosothiol loaded. As expected, significant antimicrobial/anti-biofilm activities of the NO release PVDF-HFP film were observed against Gram positive S. aureus and Gram negative P. aeruginosa bacterial strains.


Assuntos
Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Membranas Artificiais , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Compostos de Vinila/química
6.
Chem Commun (Camb) ; 55(3): 401-404, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30542676

RESUMO

A series of new fluoro S-nitrosothiols is reported as potential nitric oxide (NO) donors. A three-step synthesis and the NO releasing kinetic profiles of these species are presented. The stoichiometric release of NO, with the clean formation of corresponding disulfides, confirms that these new species can facilitate their application as NO donors for various applications including creating novel antimicrobial and thromboresistant fluoropolymer-based medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...