Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Bioprint ; 9(5): 776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457944

RESUMO

Orange peels are often discarded as food waste despite being a nutritious source of vitamins and antioxidants. These orange peel wastes (OPW) are produced in millions of tons globally every year; discarding them results in detrimental environmental and economical impacts. This paper discusses the application of 3D printing technology to effectively upcycle the OPW into edible, healthy snacks for consumption. We aimed to develop a method to enable OPW to formulate 3D-printable inks for direct ink writing (DIW). Using DIW 3D printing, we successfully created edible constructs of rheologically modified inks containing OPW. The formulated ink possessed an initial viscosity of 22.5 kPa.s, a yield stress of 377 Pa, and a storage modulus of 44.24 kPa. To validate the method, we conducted a biochemical analysis of the OPW at each stage of the fabrication process. This study suggested that our ink formulation and 3D printing process did not affect the content of bioflavonoids and antioxidants of the OPW. The cell viability test using human dermal microvascular endothelium (HMEC-1) suggested that the OPW did not exhibit cytotoxicity throughout the entire process of the ink manipulation. Overall, this study has highlighted a potential scenario to revalorize food waste into the food value chain using 3D printing toward more sustainable and circular food manufacturing and consumption.

2.
Mutagenesis ; 38(3): 139-150, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37115513

RESUMO

The aim of the present study was to evaluate the compatibility of reconstructed 3D human small intestinal microtissues to perform the in vitro comet assay. The comet assay is a common follow-up genotoxicity test to confirm or supplement other genotoxicity data. Technically, it can be performed utilizing a range of in vitro and in vivo assay systems. Here, we have developed a new reconstructed human intestinal comet (RICom) assay protocol for the assessment of orally ingested materials. The human intestine is a major site of food digestion and adsorption, first-pass metabolism as well as an early site of toxicant first contact and thus is a key site for evaluation. Reconstructed intestinal tissues were dosed with eight test chemicals: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU), phenformin hydrochloride (Phen HCl), benzo[a]pyrene (BaP), 1,2-dimethylhydrazine hydrochloride (DMH), potassium bromate (KBr), glycidamide (GA), and etoposide (Etop) over a span of 48 h. The RICom assay correctly identified the genotoxicity of EMS, ENU, KBr, and GA. Phen HCl, a known non-genotoxin, did not induce DNA damage in the 3D reconstructed intestinal tissues whilst showing high cytotoxicity as assessed by the assay. The 3D reconstructed intestinal tissues possess sufficient metabolic competency for the successful detection of genotoxicity elicited by BaP, without the use of an exogenous metabolic system. In contrast, DMH, a chemical that requires liver metabolism to exert genotoxicity, did not induce detectable DNA damage in the 3D reconstructed intestinal tissue system. The genotoxicity of Etop, which is dependent on cellular proliferation, was also undetectable. These results suggest the RICom assay protocol is a promising tool for further investigation and safety assessment of novel ingested materials. We recommend that further work will broaden the scope of the 3D reconstructed intestinal tissue comet assay and facilitate broader analyses of genotoxic compounds having more varied modes of actions.


Assuntos
Dano ao DNA , Etilnitrosoureia , Humanos , Ensaio Cometa/métodos , Testes de Mutagenicidade/métodos , Metanossulfonato de Etila , Intestinos , Mutagênicos/toxicidade
3.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139842

RESUMO

Orange peel waste (OPW) is known to contain an abundant amount of polyphenols compounds such as flavonoids, well-reported for their antioxidant and anti-inflammatory properties. While OPW is generally regarded as a food waste, the opportunity to extract bioactive compounds from these "wastes" arises due to their abundance, allowing the investigation of their potential effects on endothelial cells. Hence, this study aims to use a green extraction method and pressurized hot water extraction (PHWE) to extract bioactive compounds from OPW. Liquid chromatography with UV detection (LC/UV) and liquid chromatography mass spectrometry (LC/MS) were subsequently used to identify the bioactive compounds present. Through the optimization of the extraction temperature for PHWE, our results demonstrated that extraction temperatures of 60 °C and 80 °C yield distinct bioactive compounds and resulted in better antioxidant capacity compared to other extraction temperatures or organic solvent extraction. Despite having similar antioxidant capacity, their effects on endothelial cells were distinct. Specifically, treatment of endothelial cells with 60 °C OPW extracts inhibited TNFα-induced vascular inflammation and endothelial dysfunction in vitro, suggesting that OPW possess vasoprotective effects likely mediated by anti-inflammatory effects.

4.
Sci Rep ; 12(1): 13036, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906278

RESUMO

The pulp of avocado (Persea Americana) is widely consumed as the primary food source, while the seed is often discarded as food waste. Increased consumption of avocado would inevitably results in production of waste by-products such as avocado seeds, hence the ability to extract phytochemicals from such waste, and upcycling to potential nutraceutical products is of great interest. The overall aim of this study is to explore avocado seeds as potential functional food through the combined use of a green extraction method, chemical standardization and pattern recognition tools, and biological characterization assays. Specifically, this study utilized an organic solvent-free extraction method, pressurized hot water extraction (PHWE) to extract phytochemicals from avocado seeds and liquid chromatography mass spectrometry (LCMS) was used to identify the phytochemicals present in the avocado seeds. Our results demonstrated that avocado seed extracts have antioxidant activity and inhibited oxidative stress-induced metabolomics changes in endothelial cells, suggesting that avocado seed extracts have vasoprotective actions.


Assuntos
Persea , Eliminação de Resíduos , Antioxidantes/química , Células Endoteliais , Persea/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Sementes/química , Água/análise
5.
Plants (Basel) ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451690

RESUMO

Abelmoschus esculentus L. Moench (okra) is a commonly consumed vegetable that consists of the seeds and peel component which are rich in polyphenolic compounds. The aim of this study is to utilize pressurized hot water extraction (PHWE) for the extraction of bioactive phytochemicals from different parts of okra. A single step PHWE was performed at various temperatures (60 °C, 80 °C, 100 °C and 120 °C) to determine which extraction temperature exhibits the optimum phytochemical profile, antioxidant and antidiabetic activities. The optimum temperature for PHWE extraction was determined at 80 °C and the biological activities of the different parts of okra (Inner Skin, Outer Skin and Seeds) were characterized using antioxidant (DPPH and ABTS), α-glucosidase and vasoprotective assays. Using PHWE, the different parts of okra displayed distinct phytochemical profiles, which consist of primarily polyphenolic compounds. The okra Seeds were shown to have the most antioxidant capacity and antidiabetic effects compared to other okra parts, likely to be attributed to their higher levels of polyphenolic compounds. Similarly, okra Seeds also reduced vascular inflammation by downregulating TNFα-stimulated VCAM-1 and SELE expression. Furthermore, metabolite profiling by LC/MS also provided evidence of the cytoprotective effect of okra Seeds in endothelial cells. Therefore, the use of PHWE may be an alternative approach for the environmentally friendly extraction and evaluation of plant extracts for functional food applications.

6.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187302

RESUMO

Quinoa is widely noted for its nutritional value. The seed is the main edible part of the plant and exists in at least three different colors: white, red and black. This study utilized a pressurized hot water extraction (PHWE) for the extraction of phytochemicals from quinoa. Chemical fingerprints with LC/UV and LC/MS using a targeted approach and pattern recognition tools were used to evaluate the quinoa extracts. The antioxidant properties for various types of quinoa were evaluated using DPPH assay, ABTS assay and the cytoprotective effect of quinoa extracts were investigated in HMEC-1 cell line. Distinctive chemical profiles obtained from black and red quinoa were well correlated with the antioxidant activities and cytoprotective effects. The combination of PHWE, chemical standardization with LC/UV and LC/MS, pattern recognition tools and biological assay provided an approach for the evaluation and eventual production of quinoa extracts for functional food.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...