Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(9): 1593-1609, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35398020

RESUMO

The lipid bilayer of eukaryotic cells' plasma membrane is almost impermeable to small ions and large polar molecules, but its miniscule basal permeability in intact cells is poorly characterized. This report describes the intrinsic membrane permeability of A549 cells toward the charged molecules propidium (Pr2+) and ATP4-. Under isotonic conditions, we detected with quantitative fluorescence microscopy, a continuous low-rate uptake of Pr (∼150 × 10-21 moles (zmol)/h/cell, [Pr]o = 150 µM, 32°C). It was stimulated transiently but strongly by 66% hypotonic cell swelling reaching an influx amplitude of ∼1500 (zmol/h)/cell. The progressive Pr uptake with increasing [Pr]o (30, 150, and 750 µM) suggested a permeation mechanism by simple diffusion. We quantified separately ATP release with custom wide-field-of-view chemiluminescence imaging. The strong proportionality between ATP efflux and Pr2+ influx during hypotonic challenge, and the absence of stimulation of transmembrane transport following 300% hypertonic shock, indicated that ATP and Pr travel the same conductive pathway. The fluorescence images revealed a homogeneously distributed intracellular uptake of Pr not consistent with high-conductance channels expressed at low density on the plasma membrane. We hypothesized that the pathway consists of transiently formed water pores evenly spread across the plasma membrane. The abolition of cell swelling-induced Pr uptake with 500 µM gadolinium, a known modulator of membrane fluidity, supported the involvement of water pores whose formation depends on the membrane fluidity. Our study suggests an alternative model of a direct permeation of ATP (and other molecules) through the phospholipid bilayer, which may have important physiological implications.


Assuntos
Trifosfato de Adenosina , Água , Células A549 , Trifosfato de Adenosina/metabolismo , Transporte Biológico/fisiologia , Humanos , Propídio
2.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298439

RESUMO

While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in ß cell function, but these studies were performed in tumor-derived MIN6 cells and systemic KO mice. To further characterize the regulatory roles of 14-3-3ζ in ß cell function, we generated ß cell-specific 14-3-3ζ-KO mice. Although no effects on ß cell mass were detected, potentiated glucose-stimulated insulin secretion (GSIS), mitochondrial function, and ATP synthesis were observed. Deletion of 14-3-3ζ also altered the ß cell transcriptome, as genes associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute 14-3-3 protein inhibition in mouse and human islets recapitulated the enhancements in GSIS and mitochondrial function, suggesting that 14-3-3ζ is the critical isoform in ß cells. In dysfunctional db/db islets and human islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretion, and pan-14-3-3 protein inhibition led to enhanced GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ in the regulation of ß cell function and provides a deeper understanding of how insulin secretion is controlled in ß cells.


Assuntos
Células Secretoras de Insulina , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Animais , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Mitocôndrias/metabolismo
3.
Life (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357072

RESUMO

The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.

4.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L49-L58, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596106

RESUMO

Extracellular ATP and its metabolites are potent paracrine modulators of lung alveolar cell function, including surfactant secretion and fluid transport, but the sources and mechanism of intra-alveolar ATP release remain unclear. To determine the contribution of gas-exchanging alveolar type 1 (AT1) and surfactant-secreting type 2 (AT2) cells to stretch-induced ATP release, we used quantitative real-time luminescence ATP imaging and rat primary alveolar cells cultured on silicon substrate for 2-7 days. When cultured on solid support, primary AT2 cells progressively transdifferentiated into AT1-like cells with ~20% of cells showing AT1 phenotype by day 2-3 (AT2:AT1 ≈ 4:1), while on day 7, the AT2:AT1 cell ratio was reversed with up to 80% of the cells displaying characteristics of AT1 cells. Stretch (1 s, 5-35%) induced ATP release from AT2/AT1 cell cultures, and it was highest on days 2 and 3 but declined in older cultures. ATP release tightly correlated with the number of remaining AT2 cells in culture, consistent with ~10-fold lower ATP release by AT1 than AT2 cells. ATP release was unaffected by inhibitors of putative ATP channels carbenoxolone and probenecid but was significantly diminished in cells loaded with calcium chelator BAPTA. These pharmacological modulators had similar effects on stretch-induced intracellular Ca2+ responses measured by Fura2 fluorescence. The study revealed that AT2 cells are the primary source of stretch-induced ATP release in heterocellular AT2/AT1 cell cultures, suggesting similar contribution in intact alveoli. Our results support a role for calcium-regulated mechanism but not ATP-conducting channels in ATP release by alveolar epithelial cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Epiteliais Alveolares/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 14(7): e0219205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269062

RESUMO

In the rat, oxytocin (OT) produces dose-dependent diuretic and natriuretic responses. Post-translational enzymatic conversion of the OT biosynthetic precursor forms both mature and C-terminally extended peptides. The plasma concentrations of these C-terminally extended peptides (OT-G; OT-GK and OT-GKR) are elevated in newborns and pregnant rats. Intravenous injection of OT-GKR to rats inhibits diuresis, whereas injection of amidated OT stimulates diuresis. Since OT and OT-GKR show different effects on the urine flow, we investigated whether OT-GKR modulates renal action by inhibition of the arginine-vasopressin (AVP) receptor V2 (V2R), the receptor involved in renal water reabsorption. Experiments were carried out in the 8-week-old Wistar rats receiving intravenous (iv) injections of vehicle, OT, OT-GKR or OT+OT-GKR combination. OT (10 µmol/kg) increased urine outflow by 40% (P<0.01) and sodium excretion by 47% (P<0.01). Treatment with OT-GKR (10 µmol/kg) decreased diuresis by 50% (P<0.001), decreased sodium excretion by 50% (P<0.05) and lowered potassium by 42% (P<0.05). OT antagonist (OTA) reduced diuresis and natriuresis exerted by OT, whereas the anti-diuretic effect of OT-GKR was unaffected by OTA. The treatment with V2R antagonist (V2A) in the presence and absence of OT induced diuresis, sodium and potassium outflow. V2A in the presence of OT-GKR only partially increased diuresis and natriuresis. Autoradiography and molecular docking analysis showed potent binding of OT-GKR to V2R. Finally, the release of cAMP from CHO cells overexpressing V2 receptor was induced by low concentration of AVP (EC50:4.2e-011), at higher concentrations of OT (EC50:3.2e-010) and by the highest concentrations of OT-GKR (EC50:1.1e-006). OT-GKR potentiated cAMP release when combined with AVP, but blocked cAMP release when combined with OT. These results suggest that OT-GKR by competing for the OT renal receptor (OTR) and binding to V2R in the kidney, induces anti-diuretic, anti-natriuretic, and anti-kaliuretic effects.


Assuntos
Diurese , Natriurese , Ocitocina/metabolismo , Animais , Autorradiografia , Ligação Competitiva , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Eletrólitos/metabolismo , Humanos , Rim/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ratos , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Micção , Vasopressinas/metabolismo
6.
Curr Top Membr ; 83: 45-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196610

RESUMO

Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that stimulate purinergic receptors and regulate diverse processes in the normal lungs. They are also associated with pathogenesis of a number of respiratory diseases and clinical complications including acute respiratory distress syndrome and ventilator induced lung injury. Mechanical forces are major stimuli for cellular ATP release but precise mechanisms responsible for this release are still debated. The present review intends to provide the current state of knowledge of the mechanisms of ATP release in the lung. Putative pathways of the release, including the contribution of cell membrane injury and cell lysis are discussed addressing their strength, weaknesses and missing evidence that requires future study. We also provide an overview of the recent technical advances in studying cellular ATP release in vitro and ex vivo. Special attention is given to new insights into lung ATP release obtained with the real-time luminescence ATP imaging. This includes recent data on stretch-induced mechanosensitive ATP release in a model and primary cells of lung alveoli in vitro as well as inflation-induced ATP release in airspaces and pulmonary blood vessels of lungs, ex vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Fenômenos Mecânicos , Imagem Óptica , Animais , Fenômenos Biomecânicos , Humanos , Pulmão/citologia , Fatores de Tempo
7.
Am J Physiol Cell Physiol ; 317(3): C566-C575, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216191

RESUMO

Although several mechanical stressors promote ATP secretion from eukaryotic cells, few mechanosensitive pathways for ATP release have been precisely characterized and none have been clearly identified. To facilitate progress, we report here a wide field of view (∼20 × 20 mm sample area) imaging technique paired with a quantitative image analysis to accurately map the dynamics of ATP release from a cell population. The approach has been tested on A549 cells stretched at high initial strain rate (2-5 s-1) or swelled by hypotonic shock. The amount of ATP secreted in response to a series of five graded stretch pulses (5-37% linear deformation, 1-s duration at 25°C) changed nonmonotonically with respect to strain amplitude and was inhomogeneous across the cell monolayer. In a typical experiment, extracellular ATP density averaged 250 fmol/mm2, but the area of detectable signal covered only ∼40% of the cells. In some areas, ATP accumulation peaked around 900 fmol/mm2, which corresponded to an estimated concentration of 4.5 µM. The total amount of ATP released from the combined stretch pulses reached 384 ± 224 pmol/million cells (n = 4). Compared with stretch, hypotonic shock (50%, 30°C) elicited a more homogeneous ATP secretion from the entire cell population but at a lower yield totaling 28 ± 12 pmol/million cells (n = 4). The quantitative extracellular ATP mapping of several thousand cells at once, with this wide field of view imaging system, will help identify ATP release pathways by providing unique insights on the dynamics and inhomogeneities of the cellular ATP secretion that are otherwise difficult to assess within the smaller field of view of a microscope.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Imagem Molecular/métodos , Pressão Osmótica/fisiologia , Estresse Mecânico , Células A549 , Humanos , Microscopia Eletrônica/métodos
8.
J Cell Physiol ; 232(12): 3496-3509, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28105751

RESUMO

An upregulation of Egr-1 expression has been reported in models of atherosclerosis and intimal hyperplasia and, various vasoactive peptides and growth promoting stimuli have been shown to induce the expression of Egr-1 in vascular smooth muscle cells (VSMC). Angiotensin-II (Ang-II) is a key vasoactive peptide that has been implicated in the pathogenesis of vascular diseases. Ang-II elevates intracellular Ca2+ through activation of the store-operated calcium entry (SOCE) involving an inositol-3-phosphate receptor (IP3R)-coupled depletion of endoplasmic reticular Ca2+ and a subsequent activation of the stromal interaction molecule 1 (STIM-1)/Orai-1 complex. However, the involvement of IP3R/STIM-1/Orai-1-Ca2+ -dependent signaling in Egr-1 expression in VSMC remains unexplored. Therefore, in the present studies, we have examined the role of Ca2+ signaling in Ang-II-induced Egr-1 expression in VSMC and investigated the contribution of STIM-1 or Orai-1 in mediating this response. 2-aminoethoxydiphenyl borate (2-APB), a dual non-competitive antagonist of IP3R and inhibitor of SOCE, decreased Ang-II-induced Ca2+ release and attenuated Ang-II-induced enhanced expression of Egr-1 protein and mRNA levels. Egr-1 upregulation was also suppressed following blockade of calmodulin and CaMKII. Furthermore, RNA interference-mediated depletion of STIM-1 or Orai-1 attenuated Ang-II-induced Egr-1 expression as well as Ang-II-induced phosphorylation of ERK1/2 and CREB. In addition, siRNA-induced silencing of CREB resulted in a reduction in the expression of Egr-1 stimulated by Ang-II. In summary, our data demonstrate that Ang-II-induced Egr-1 expression is mediated by STIM-1/Orai-1/Ca2+ -dependent signaling pathways in A-10 VSMC.


Assuntos
Angiotensina II/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína ORAI1/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Molécula 1 de Interação Estromal/genética , Fatores de Tempo , Transfecção , Regulação para Cima
9.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L956-L969, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27638905

RESUMO

Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH2O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10-6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function.


Assuntos
Trifosfato de Adenosina/metabolismo , Sistemas Computacionais , Imageamento Tridimensional , Pulmão/metabolismo , Pressão , Animais , Capilares/metabolismo , Indicadores e Reagentes , Pulmão/irrigação sanguínea , Masculino , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Ratos Wistar
10.
Respir Res ; 11: 138, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20925946

RESUMO

BACKGROUND: Exposure to chlorine (Cl2) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl2-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury. METHODS: Balb/C mice were exposed to Cl2 gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl2, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl2 exposure. RESULTS: Mice exposed to Cl2 had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl2 exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl2-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl2 prevented lipid peroxidation in the lung. Following Cl2 exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl2 exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU. CONCLUSION: Our data show that the anti-oxidant DMTU is effective in attenuating Cl2 induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.


Assuntos
Asma/induzido quimicamente , Asma/prevenção & controle , Cloro/toxicidade , Irritantes/toxicidade , Pulmão/fisiologia , Tioureia/análogos & derivados , Animais , Asma/fisiopatologia , Cloro/antagonistas & inibidores , Relação Dose-Resposta a Droga , Exposição por Inalação/prevenção & controle , Irritantes/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Função Respiratória/métodos , Tioureia/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...