Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 355: 124191, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782164

RESUMO

The development of new porous materials has attracted intense attention as adsorbents for removing pollutants from wastewater. However, pure inorganic and organic porous materials confront various problems in purifying the wastewater. In this work, we integrated a covalent organic framework (TpPa-1) with an inorganic zeolite (TS-1) for the first time via a solvothermal method to fabricate new-type nanoadsorbents. The covalent organic framework/zeolite (TpPa-1/TS-1) nanoadsorbents combined the merits of the zeolite and COF components and possessed efficient adsorptive removal of organic contaminants from solution. Structural morphology and chemical composition characterization by powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis demonstrated the successful preparation of TpPa-1/TS-1 composite nanoadsorbents. The resultant composite adsorbent TpPa-1/TS-1 removed rhodamine B at 1.7 and 2.6 times the efficiency of TpPa-1 and TS-1, respectively. Additional investigation revealed that the Freundlich adsorption isotherm and the pseudo-second-order kinetic model could be employed to represent the adsorption process more appropriately. Thermodynamic calculation analysis showed that the adsorption process proceeded spontaneously and exothermically. Besides, the effects of pH, absorbent mass and ionic strength on the adsorption performance were systematically investigated. The prepared composite adsorbent showed a slight decrease in removal efficiency after eight cycles of repeated use, and real water environment experiments also showed the high stability of the adsorbent. The enhanced performance can be attributed to electrostatic interaction, acid-base interaction, hydrogen bonding and π-π interactions.


Assuntos
Estruturas Metalorgânicas , Rodaminas , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Poluentes Químicos da Água/química , Adsorção , Rodaminas/química , Estruturas Metalorgânicas/química , Águas Residuárias/química , Cinética , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
2.
Chemosphere ; 303(Pt 1): 134839, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537628

RESUMO

Since the human consumption of coal is increasingly growing and coal-based solid wastes are discharged in large quantities, the resource utilization of coal-based solid wastes has been paid more attention. In the present work, for the first time, the coal gasification fine slag is subjected to prepare ZSM-5 zeolites with ultra-low n(SiO2)/n(Al2O3) ratios (less than 20) and hierarchical pore structures. The increase in the concentration of the alkaline extract leads to the decrease of the crystallinity, the irregularity of the microscopic morphology, and the decrease of the specific surface area, resulting in the in-situ generation of mesopores within ZSM-5. Moreover, adsorption experiments demonstrate that ZSM-5-2M exhibits the best methylene blue adsorption performance at the pH of 9 with a removal rate of up to 82.07%, and it also has good adsorption performance in simulated real water samples. Furthermore, the adsorption performance of ZSM-5-2M on the malachite green, Rhodamine B, Congo red, and methyl orange has been investigated and it is found to be very effective for the adsorption of cationic dyes, and its adsorption performance for methylene blue and malachite green is reduced in the presence of anions.


Assuntos
Zeolitas , Adsorção , Óxido de Alumínio , Carvão Mineral , Humanos , Azul de Metileno , Porosidade , Dióxido de Silício , Resíduos Sólidos , Zeolitas/química
3.
Chemosphere ; 287(Pt 2): 132227, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826920

RESUMO

In recent years, coal gasification has been gradually promoted as clean technology, and coal gasification slag (CGS) emissions have increased accordingly. CGS, including coarse slag and fine slag, is rich in SiO2 and Al2O3 and has pozzolanic activity, and thus CGS can be regarded as a cheap source of aluminosilicate. Also, CGS, especially the fine slag, usually contains higher contents of residual carbon which has a large specific surface area and low volatility and hence can be considered as a favorable precursor of activated carbon. Benefiting from these characteristics, CGS can be used to prepare high value-added porous materials, such as zeolite, mesoporous silica, carbon-silicon composite, and porous ceramics, and the obtained structures accommodate both sufficient adsorption capacity and low cost. Here, we review the research advances in characteristics of CGS and preparation methods of CGS-based porous materials, as well as their adsorption performance of heavy metal ions, organic dyes, ammonia nitrogen, and other water pollutants. The current studies indicate that CGS-derived adsorbents are effective and economical alternatives for removing aqueous pollutants. In addition, further research prospects on CGS-based porous materials are proposed.


Assuntos
Carvão Mineral , Metais Pesados , Porosidade , Dióxido de Silício , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...