Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(8): 3142-3150, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795954

RESUMO

The current synthesis methods of high-entropy alloy (HEA) thin-film coatings face huge challenges in facile preparation, precise thickness control, conformal integration, and affordability. These challenges are more specific and noteworthy for noble metal-based HEA thin films where the conventional sputtering methods encounter thickness control and high-cost issues (high-purity noble metal targets required). Herein, for the first time, we report a facile and controllable synthesis process of quinary HEA coatings consisting of noble metals (Rh, Ru, Pt, Pd, and Ir), by sequential atomic layer deposition (ALD) coupled with electrical Joule heating for post-alloying. Furthermore, the resulting quinary HEA thin film with a thickness of ∼50 nm and an atomic ratio of 20:15:21:18:27 shows promising potential as a platform for catalysis, exhibiting enhanced electrocatalytic hydrogen evolution reaction (HER) performances with lower overpotentials (e.g., from 85 to 58 mV in 0.5 M H2SO4) and higher stability (by retaining more than 92% of the initial current after 20 h with a current density of 10 mA/cm2 in 0.5 M H2SO4) than other noble metal-based structure counterparts in this work. The enhanced material properties and device performances are attributed to the efficient electron transfer of HEA with the increased number of active sites. This work not only presents RhRuPtPdIr HEA thin films as promising HER catalysts but also sheds light on controllable fabrication of conformal HEA-coated complex structures toward a broad range of applications.

2.
ACS Appl Mater Interfaces ; 14(46): 52279-52288, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36375117

RESUMO

Mesoporous silica nanoparticles have highly versatile structural properties that are suitable for a plethora of applications including catalysis, separation, and nanotherapeutics. We report a one-pot synthesis strategy that generates bimodal mesoporous silica nanoparticles via coassembly of a structure-directing Gemini surfactant (C16-3-16) with a tetraethoxysilane/(3-aminopropyl)triethoxysilane-derived sol additive. Synthesis temperature enables control of the nanoparticle shape, structure, and mesopore architecture. Variations of the aminosilane/alkylsilane molar ratio further enable programmable adjustments of hollow to core-shell and dense nanoparticle morphologies, bimodal pore sizes, and surface chemistries. The resulting Gemini-directed aminated mesoporous silica nanoparticles have excellent carbon dioxide adsorption capacities and antimicrobial properties against Escherichia coli. Our results provide an enhanced understanding of the structure formation of multiscale mesoporous inorganic materials that are desirable for numerous applications such as carbon sequestration, water remediation, and biomedical-related applications.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Prata , Dióxido de Carbono , Porosidade , Nanopartículas/química , Antibacterianos/farmacologia
3.
ACS Polym Au ; 2(1): 42-49, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855749

RESUMO

Block copolymer self-assembly-derived thin films provide direct access to two- and three-dimensional periodically ordered mesostructures as enablers for many nanotechnology applications. This report describes laser-annealing-induced disorder-order mesophase transitions of polystyrene-block-poly(ethylene oxide)/resol hybrid thin films over a range of laser temperatures (∼45 to 525 °C) and short dwell times (0.25 to 100 ms), revealing the non-equilibrium ordering and disordering kinetics and behaviors. We found that a combination of transient laser temperature of ∼275 °C and annealing dwell time of 100 ms provided the most optimal kinetic and thermodynamic control of the diffusivities of hybrid mesophases and photothermal-induced resol polymerization, yielding long-range ordered films resembling an in-plane body-centered cubic sphere morphology. A clear understanding of hybrid thin film mesophase self-assembly under non-equilibrium laser annealing could open new avenues to introduce novel chemistries and rapidly achieve nanoscale periodic order suitable for the patterning of complex structures, electronics, sensing, and emerging quantum materials.

4.
ACS Appl Mater Interfaces ; 13(30): 36117-36129, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288649

RESUMO

We describe a versatile and scalable strategy toward long-range and periodically ordered mesoporous alumina (Al2O3) structures by evaporation-induced self-assembly of a structure-directing ABA triblock copolymer (F127) mixed with aluminum tri-sec-butoxide-derived sol additive. We found that the separate preparation of the alkoxide sol-gel reaction before mixing with the block copolymer enabled access to a relatively unexplored parameter space of copolymer-to-additive composition, acid-to-metal molar ratio, and solvent, yielding ordered mesophases of two-dimensional (2D) lamellar, hexagonal cylinder, and 3D cage-like cubic lattices, as well as multiscale hierarchical ordered structures from spinodal decomposition-induced macro- and mesophase separation. Thermal annealing in air at 900 °C yielded well-ordered mesoporous crystalline γ-Al2O3 structures and hierarchically porous γ-Al2O3 with 3D interconnected macroscale and ordered mesoscale pore networks. The ordered Al2O3 structures exhibited tunable pore sizes in three different length scales, <2 nm (micropore), 2-11 nm (mesopore), and 1-5 µm (macropore), as well as high surface areas and pore volumes of up to 305 m2/g and 0.33 cm3/g, respectively. Moreover, the resultant mesoporous Al2O3 demonstrated enhanced adsorption capacities of carbon dioxide and Congo red dye. Such hierarchically ordered mesoporous Al2O3 are well-suited for green environmental solutions and urban sustainability applications, for example, high-temperature solid adsorbents and catalyst supports for carbon dioxide sequestration, fuel cells, and wastewater separation treatments.

5.
Langmuir ; 36(36): 10803-10810, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32787003

RESUMO

This report describes a simple one-pot soft-templating and ammonolysis-free approach to synthesize mesoporous crystalline titanium oxynitride by combining block copolymer-directed self-assembly with metal sol and urea precursors. The Pluronic F127 triblock copolymer was employed to structure-direct titanium-oxo-acetate sol nanoparticles and urea-formaldehyde into ordered hybrid mesostructured monoliths. The hybrid composites were directly converted into mesoporous crystalline titanium oxynitride and retained macroscale monolithic integrity up to 800 °C under nitrogen. Notably, the urea-formaldehyde additive provided nitrogen and rigid support to the inorganic mesostructure during crystallization. The resultant mesoporous titanium oxynitride exhibited good electrochemical catalytic activity toward hydrogen evolution reaction in 1 M KOH aqueous medium under applied bias. Our results suggest an inexpensive and safe pathway to generate ordered mesoporous crystalline metal oxynitride structures suitable for catalyst and energy-storage applications.

6.
Adv Mater ; 32(21): e1908362, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270557

RESUMO

Despite extensive studies on mesoporous silica since the early 1990s, the synthesis of two-dimensional (2D) silica nanostructures remains challenging. Here, mesoporous silica is synthesized at an interface between two immiscible solvents under conditions leading to the formation of 2D superstructures of silica cages, the thinnest mesoporous silica films synthesized to date. Orientational correlations between cage units increase with increasing layer number controlled via pH, while swelling with oil and mixed surfactants increase micelle size dispersity, leading to complex clathrate type structures in multilayer superstructures. The results suggest that a three-dimensional (3D) crystallographic registry within cage-like superstructures emerges as a result of the concerted 3D co-assembly of the organic and inorganic components. Mesoporous 2D superstructures can be fabricated over macroscopic film dimensions and stacked on top of each other. The realization of previously inaccessible mesoporous silica heterostructures with separation or catalytic properties unachievable via conventional bulk syntheses is envisioned.

7.
J Am Chem Soc ; 137(6): 2350-8, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25625616

RESUMO

Methylammonium lead halide perovskite solar cells continue to excite the research community due to their rapidly increasing performance which, in large part, is due to improvements in film morphology. The next step in this progression is control of the crystal morphology which requires a better fundamental understanding of the crystal growth. In this study we use in situ X-ray scattering data to study isothermal transformations of perovskite films derived from chloride, iodide, nitrate, and acetate lead salts. Using established models we determine the activation energy for crystallization and find that it changes as a function of the lead salt. Further analysis enabled determination of the precursor composition and showed that the primary step in perovskite formation is removal of excess organic salt from the precursor. This understanding suggests that careful choice of the lead salt will aid in controlling crystal growth, leading to superior films and better performing solar cells.


Assuntos
Compostos de Cálcio/química , Halogênios/química , Compostos Inorgânicos/química , Compostos Orgânicos/química , Óxidos/química , Titânio/química , Ânions , Cristalização , Cinética
8.
Science ; 330(6001): 214-9, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20929772

RESUMO

Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly-directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process. Depending on thickness, template removal leaves either an array of nanopillars or porous nanostructures behind. For stoichiometric NiSi deposition, the template pores provide confinement, enabling heteroepitaxial growth. Irradiation through a mask provides access to hierarchically structured materials. These results on etchable and non-etchable materials suggest a general strategy for growing epitaxial single-crystal nanostructured thin films for fundamental studies and a wide variety of applications, including energy conversion and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...