Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397751

RESUMO

Hydroxy-α-sanshool (HAS), hydroxy-ß-sanshool (HBS), hydroxy-γ-sanshool (HRS), and γ-sanshool (RS) are the key components from the Zanthoxylum genus, processing a range of pharmacological activities. The present study investigated the protective capacities of four sanshools on a dextran sulfate sodium (DSS)-induced model of ulcerative colitis (UC). The results showed that sanshool administration alleviated the colitis symptoms by reducing body weight loss and disease activity index (DAI) score, increasing the colon length, and improving colonic injury and the change in immune organ weight. Furthermore, sanshools enhanced the antioxidant enzyme activities, and RS exhibited the lowest effect on the improvement in total antioxidative capacity (T-AOC) and antioxidant abilities compared to the other three sanshools. The p65 nuclear factor κB (p65 NFκB) signaling pathway was inhibited to prevent hyperactivation and decreased the production of inflammatory factors. The gut barrier function in DSS-induced mice was restored by increasing goblet cell number and levels of tight junction proteins (zonula occludens-1, occludin, and claudin-1), and the levels of protein in HAS and HRS groups were higher than that in the HBS group, significantly. The analysis of gut microbiota suggested that sanshool administration significantly boosted the abundance of Lachnospiraceae, Muribaculaceae, Oscillospiraceae, and Alistipes and reduced the level of Buchnera in colitis mice. Collectively, the sanshool treatment could ameliorate colitis by resisting colon injury and regulating intestinal barrier dysfunction and gut microbiota dysbiosis; meanwhile, HRS and HAS have better improvement effects.

2.
Int J Biol Macromol ; 262(Pt 1): 129683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296664

RESUMO

In this study, a novel edible composite film was prepared by chitosan, konjac glucomannan oxidized with ozone for 60 min (OKGM), and Zanthoxylum Bungeanum essential oil (ZEO). The chitosan/OKGM film was fortified with ZEO to assess the physical properties, structure, antioxidant and antibacterial abilities, and pork preservation systematically. Compared to the control group, the addition of 1 % ZEO increased tensile strength by 18.92 % and decreased water solubility, water vapor permeability, and moisture content by 10.05 %, 6.60 %, and 1.03 %, respectively. However, the treatment with ZEO (1.5 % and 2 %) decreased mechanical properties and increased the water vapor permeability. The ultraviolet barrier, antioxidant, and antibacterial abilities of composite films were enhanced by increasing the ZEO addition. Moreover, the COZ-1 film was used to protect the freshness of pork with slow-release behavior of ZEO. The results showed that addition of ZEO significantly decreased the pH value, total viable count, redness, total volatile basic nitrogen, and thiobarbituric acid and increased the hardness of pork after preservation for 10 days. Therefore, the chitosan/OKGM loaded with ZEO film can potentially be used as food packaging, providing new ideas for the research on active packaging materials.


Assuntos
Quitosana , Mananas , Óleos Voláteis , Zanthoxylum , Antioxidantes/farmacologia , Antioxidantes/química , Quitosana/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Vapor , Embalagem de Alimentos/métodos , Antibacterianos/química , Carne/microbiologia
3.
Int J Biol Macromol ; 248: 125598, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423447

RESUMO

Oxidation is an effective way to prepare depolymerized konjac glucomannan (KGM). The oxidized KGM (OKGM) differed from native KGM in physicochemical properties due to different molecular structure. In this study, the effects of OKGM on the properties of gluten protein were investigated and compared with native KGM (NKGM) and enzymatic hydrolysis KGM (EKGM). Results showed that the OKGM with a low molecular weight and viscosity could improve rheological properties and enhance thermal stability. Compared to native gluten protein (NGP), OKGM stabilized the protein secondary structure by increasing the contents of ß-sheet and α-helix, and improved the tertiary structure through increasing the disulfide bonds. The compact holes with shrunk pore size confirmed a stronger interaction between OKGM and gluten protein through scanning electron microscopy, forming a highly networked gluten structure. Furthermore, OKGM depolymerized by the moderate ozone-microwave treatment of 40 min had a higher effect on gluten proteins than that by the 100 min treatment, demonstrating that the excessive degradation of KGM weakened the interaction between the gluten protein and OKGM. These findings demonstrated that incorporating moderately oxidized KGM into gluten protein was an effective strategy to improve the properties of gluten protein.


Assuntos
Glutens , Mananas , Glutens/química , Oxirredução , Mananas/química , Estrutura Molecular
4.
Poult Sci ; 102(4): 102472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758369

RESUMO

The objective of this study was to evaluate protective effects of Fagopyrum dibotrys on antioxidant ability, intestinal barrier functions, and cecal microbiota in broiler chickens fed oxidized soybean oil. A total of 640 male Tiejiaoma broilers were randomly assigned to 8 treatments with 8 cages (10 birds per cage), as follows: birds fed basal diets containing fresh soybean oil and 0, 0.5, 1, or 2% F. dibotrys (FSCON, FSFAL, FSFAM, and FSFAH, respectively), and birds fed basal diets containing oxidized oil and 0, 0.5, 1, or 2% F. dibotrys (OSCON, OSFAL, OSFAM, and OSFAH). Oxidized oil significantly decreased transcription of Nrf2 and its downstream genes, including CAT and SOD1 in the jejunal mucosa, increased jejunal mucosa IL-6 mRNA expression, and decreased jejunal mucosa IL-22 mRNA expression and downregulated Claudin-1 and ZO-1; however, all these effects were reversed by F. dibotrys. Either 1 or 2% F. dibotrys alleviated the decreased liver SOD induced by oxidized oil on d 42. The decreased SOD and GPX, and increased MDA induced by oxidized oil were reversed by adding 1 or 2% F. dibotrys in jejunal mucosa. In addition, based on 16S rDNA, 2% F. dibotrys promoted the Firmicutes phylum and Candidatus_Arthromitus genera, but suppressed the Proteobacteria phylum and Streptococcus, Enterococcus, and Escherichia genera. In summary, oxidative stress induced by oxidized oil was ameliorated by F. dibotrys upregulating transcription of Nrf2 and its downstream genes to restore redox balance, reinforcing the intestinal barrier via higher expression of Claudin-1/ZO-1, ameliorating the inflammatory response by regulating expression of IL-6 and IL-22, and facilitating growth of Candidatus_arthromitus in the cecum. Therefore, F. dibotrys has potential as a feed additive for poultry by ameliorating oxidative stress caused by oxidized oil, enhancing barrier function, and improving gut microbiome composition.


Assuntos
Fagopyrum , Microbiota , Animais , Masculino , Galinhas/fisiologia , Óleo de Soja , Claudina-1 , Interleucina-6 , Fator 2 Relacionado a NF-E2 , Dieta/veterinária , Estresse Oxidativo , Ceco/microbiologia , Superóxido Dismutase , Ração Animal/análise , Suplementos Nutricionais/análise
5.
Epigenetics ; 17(12): 1800-1819, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695092

RESUMO

Intramuscular fat development is regulated by a series of complicated processes, with non-coding RNA (ncRNA) such as microRNA (miRNA) having a critical role during intramuscular preadipocyte proliferation and differentiation in pigs. In the present study, the miRNA expression profiles of intramuscular preadipocytes from the longissimus dorsi muscle of Chinese Guizhou Congjiang Xiang pigs were detected by RNA-seq during various differentiation stages, namely, day 0 (D0), day 4 (D4), and day 8 (D8). A total of 67, 95, and 16 differentially expressed (DE) miRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. According to gene ontology and Kyoto Encyclopedia of Genes analysis, target genes of DE miRNAs were enriched in categories and pathways related to lipid metabolic process, lipid biosynthetic process, as well as the PI3K-Akt, AMPK, and MAPK signalling pathways. Notably, miR-148a-3p was differentially expressed, with highest expressed abundance in D0, D4, and D8. Overexpression of miR-148a-3p in intramuscular preadipocytes increased cell proliferation and differentiation, and decreased apoptosis, in comparison to the knockdown of miR-148a-3p in intramuscular preadipocytes. Luciferase activity assays, quantitative polymerase-chain reaction, and western blot analysis confirmed that miR-148a-3p regulated adipogenesis by repressing PPARGC1A expression. Accordingly, the effect of miR-148a-3p mimic was attenuated by overexpression of PPARGC1A intramuscular preadipocytes. Furthermore, miR-148a-3p promoted intramuscular preadipocyte differentiation by inhibiting the AMPK/ACC/CPT1C signalling pathway. Taken together, we identified expression profiles of miRNAs in intramuscular preadipocytes and determined that miR-148a-3p acted as a promoter of adipogenesis.


Assuntos
Adipogenia , MicroRNAs , Suínos/genética , Animais , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Metilação de DNA , Proliferação de Células/genética , Luciferases/genética , Luciferases/metabolismo , China , Lipídeos
6.
PLoS One ; 17(1): e0261293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077458

RESUMO

Intramuscular fat content is an important determinant of meat quality, and preadipocyte differentiation plays a critical role in intramuscular fat deposition in pigs. However, many types of RNA differentiation, including messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) remain unreported despite their crucial roles in regulating adipogenesis. Chinese Guizhou Congjiang pigs are raised in the Guizhou province of China for their high-quality meat. Therefore, it is important for breeders to explore the mechanisms of proliferation and differentiation of intramuscular adipocytes from the longissimus dorsi muscle of these pigs. In the present study, a transcriptome analysis of intramuscular preadipocytes from Chinese Guizhou Congjiang pigs, including analyses of mRNAs, lncRNAs, and circRNAs at days 0 (D0), 4 (D4), and 8 (D8) was performed. A total of 1,538, 639, and 445 differentially expressed (DE) mRNAs, 479, 192, and 126 DE lncRNAs, and 360, 439, and 304 DE circRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. Functional analyses identified many significantly enriched RNAs related to lipid deposition, cell differentiation, metabolism processes, and obesity-related diseases, biological processes, and pathways. We identified two lncRNAs (TCONS_00012086 and TCONS_00007245) closely related to fat deposition according to their target genes and tissue expression profiles. Subcellular distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that both TCONS_00012086 and TCONS_00007245 are cytoplasmic lncRNAs. These data provide a genome-wide resource for mRNAs, lncRNAs, and circRNAs potentially involved in Chinese Guizhou Congjiang pig fat metabolism, thus improving our understanding of their function in adipogenesis.


Assuntos
Adipócitos/citologia , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA/veterinária , Adipócitos/química , Adipogenia , Animais , Diferenciação Celular , Células Cultivadas , China , Gorduras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Carne/análise , Suínos
7.
Oncol Rep ; 46(6)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698358

RESUMO

Mind bomb 1 (MIB1) is a well­known E3 ubiquitin ligase. MicroRNAs (miRNAs/miRs) have been found to serve important functions in cancer cell physiology. However, the clinical significance and biological function of MIB1 and miRNAs in prostate cancer (PCa) are yet to be fully elucidated. The current study predicted the interaction between MIB1 and miR­195­5p using TargetScan, and the results were confirmed by performing a dual­luciferase reporter assay. The mRNA expression level of MIB1 and miR­195­5p in PCa and adjacent normal tissues, and PCa cell lines was detected using reverse transcription­quantitative PCR. Cell Counting Kit­8 and Transwell assays were used to measure the proliferation, and migration and invasion of VCaP and DU145 PCa cell lines, respectively, while western blot analysis was used to detect the protein expression level of MIB1. The results revealed that the mRNA expression level of MIB1 was increased, while the mRNA expression level of miR­195­5p was decreased in PCa tissues (P<0.001 and P<0.01, respectively) and in various cell lines, including PC­3 (P<0.001 and P<0.05, respectively), VCaP (P<0.001 and P<0.01, respectively), 22Rv1 (P<0.001 and P<0.05, respectively), DU145 (P<0.001 and P<0.01, respectively) and LNCaP (P<0.001 and P<0.05, respectively). miR­195­5p mimics rescued the inhibitory effects caused by knockdown of MIB1 on cell proliferation, migration and invasion in the VCaP and DU145 cell lines. In addition, MIB1 overexpression restored the miR­195­5p overexpression­induced repression of cell proliferation and invasion. The current study revealed that the MIB1 gene was an effector of cell proliferation, migration and invasion in PCa cell lines. Furthermore, miR­195­5p may regulate PCa cell proliferation and invasion by regulating MIB1, indicating its potential therapeutic application for PCa in the future.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Neoplasias da Próstata/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Regulação para Cima
8.
J Agric Food Chem ; 59(11): 6227-32, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21534629

RESUMO

This study was conducted to evaluate the effects of grape-seed procyanidins in controlling weaning diarrhea using a rat model. Weaned rats were fed either the basal diet or basal diet supplemented with either 250 mg/kg grape-seed procyanidins or 2000 mg/kg ZnO. Treated rats had better performance with a reduced incidence of diarrhea (P < 0.05). Both ZnO and grape-seed procyanidins significantly reduced urinary lactulose to mannitol ratios (P < 0.05) and enhanced the mRNA and protein expression of the intestinal mucosal tight junction proteins Ocln/ZO-1 (P < 0.05). Grape-seed procyanidins increased the activities of SOD, GSH-Px, and GSH while decreasing the level of MDA in the intestinal mucosa (P < 0.05). Furthermore, an in vitro investigation revealed that supplementation with grape-seed procyanidins in IEC-6 intestinal epithelial cells significantly enhanced the expression of Ocln/ZO-1 under H(2)O(2)-induced oxidative stress. Collectively, these results indicate that grape-seed procyanidins have the potential to prevent weaning diarrhea by reducing intestinal permeability and improving antioxidant indices.


Assuntos
Diarreia/tratamento farmacológico , Diarreia/metabolismo , Suplementos Nutricionais/análise , Regulação para Baixo/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/administração & dosagem , Vitis/química , Animais , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...