Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2614-2623, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178791

RESUMO

Intercalation-based organic polymers that shift their colors during ion insertion and extraction provide a significant basis for existing electrochromic technology. Nevertheless, the complexity of modifying the structure in the skeleton or combining several diverse polymers to produce a full-color range has restricted the practical applications of electrochromic materials. Herein, we demonstrate two configurations of the poly(3,4-ethylenedioxythiophene) (PEDOT) Fabry-Perot (F-P) nanocavity-type electrochromic devices fabricated by spray coating lossless PEDOT on the F-P metasurfaces (Cr/ITO/Ag/Cr), which allows full-color response by simply controlling the thickness of dielectric layer indium tin oxide (ITO). However, the reflected light from the PEDOT F-P nanocavity-type electrode can be modulated by electrically controllable optical absorption of PEDOT. Besides, the subtle brightness regulation could be obtained in our F-P nanocavity electrochromic devices via altering the PEDOT thickness. Overall, our results offer a novel perspective for versatile color control of PEDOT.

2.
Opt Express ; 25(24): 30388-30394, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221068

RESUMO

Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...