Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(43): e2205414, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36042002

RESUMO

Electrochemical generation of hydrogen peroxide (H2 O2 ) by two-electron oxygen reduction offers a green method to mitigate the current dependence on the energy-intensive anthraquinone process, promising its on-site applications. Unfortunately, in alkaline environments, H2 O2 is not stable and undergoes rapid decomposition. Making H2 O2 in acidic electrolytes can prevent its decomposition, but choices of active, stable, and selective electrocatalysts are significantly limited. Here, the selective and efficient two-electron reduction of oxygen toward H2 O2 in acid by a composite catalyst that is composed of black phosphorus (BP) nailed chemically on the metallic cobalt diselenide (CoSe2 ) surface is reported. It is found that this catalyst exhibits a 91% Faradic efficiency for H2 O2 product at an overpotential of 300 mV. Moreover, it can mediate oxygen to H2 O2 with a high production rate of ≈1530 mg L-1 h-1 cm-2 in a flow-cell reactor. Spectroscopic and computational studies together uncover a BP-induced surface charge redistribution in CoSe2 , which leads to a favorable surface electronic structure that weakens the HOO* adsorption, thus enhancing the kinetics toward H2 O2 formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...