Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 177: 104761, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32147495

RESUMO

Hepatitis B virus (HBV) infection affects 364 million people worldwide and causes a serious global public health problem. The SRY-related high mobility group-box 9 (SOX9) is a risk of developing cirrhosis in patients with chronic hepatitis B and a cancer stem cell marker. However, the role of SOX9 in HBV replication has not been reported. This study revealed a distinct mechanism underling the regulation of HBV replication mediated by SOX9. HBV induces SOX9 mRNA and protein expression in human hepatoma cells, including HepG2.2.15, HepG2, Huh7, and HepG2-NTCP cells. Further study demonstrated that HBV activates SOX9 expression at the transcriptional level through inducing SOX9 promoter activity and HBc could induce the activity of SOX9 promoter. Interestingly, SOX9 in turn represses HBV replication in human hepatoma cells. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Detailed study revealed that SOX9 suppresses HBV replication through directly binding to HBV EnhII/Cp (HBV 1667-1672 nt) to inhibit EnhII/Cp activation. Results from deletion mutant analysis, ChIP assay, nuclear and cytoplasmic extraction analysis, and immunofluorescence demonstrated that SOX9 high mobility group (HMG) domain is required for SOX9 anti-HBV activity. Moreover, we demonstrated that SOX9 and hepatocyte nuclear factor 4 alpha (HNF4α) can bind to HBV EnhII/Cp (HBV 1667-1672 nt) individually and simultaneously to regulate the promoter activity. Collectively, the results revealed a distinct negative feedback mechanism underlying HBV replication and SOX9 expression, and identified SOX9 as a new host restriction factor in HBV replication and infection. IMPORTANCE: HBV infection is a global public health problem by causing serious liver diseases, but the mechanisms underlying HBV pathogenesis remain largely unknown. SOX9 is a risk of developing cirrhosis and a cancer stem cell marker, however, the role of SOX9 in HBV infection has not been reported. The authors revealed a distinct mechanism underling the regulation of HBV replication and SOX9 expression. On the one hand, HBV induces SOX9 expression in human hepatoma cells through activating SOX9 promoter. On the other hand, SOX9 in turn represses HBV replication in human hepatoma cells by binding to and inhibiting HBV EnhII/Cp through its HMG domain. More importantly, SOX9 inhibits HBV infection in HepG2-NTCP cells and C57/BL6 mice. Therefore, this study identifies SOX9 as a novel and potential therapeutic reagent for the prevention and treatment of HBV-associated diseases.


Assuntos
Vírus da Hepatite B/fisiologia , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/genética , Proteínas Virais/metabolismo , Replicação Viral , Animais , Células Hep G2 , Hepatite B/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Virais/genética
2.
FASEB J ; 34(1): 1497-1515, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914638

RESUMO

The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1ß secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1ß cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.


Assuntos
Cisteína Endopeptidases/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína SUMO-1/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413130

RESUMO

Dengue virus (DENV) infection causes serious clinical symptoms, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular permeability change is the main feature of the diseases, and the abnormal expression of proinflammatory cytokines is the important cause of vascular permeability change. However, the mechanism underlying vascular permeability induced by DENV has not been fully elucidated. Here, we reveal a distinct mechanism by which DENV infection promotes NLRP3 inflammasome activation and interleukin-1 beta (IL-1ß) release to induce endothelial permeability and vascular leakage in mice. DENV M protein interacts with NLRP3 to facilitate NLRP3 inflammasome assembly and activation, which induce proinflammatory cytokine IL-1ß activation and release. Notably, M can induce vascular leakage in mouse tissues by activating the NLRP3 inflammasome and IL-1ß. More importantly, inflammatory cell infiltration and tissue injuries are induced by M in wild-type (WT) mouse tissues, but they are not affected by M in NLRP3 knockout (NLRP3-/-) mouse tissues. Evans blue intensities in WT mouse tissues are significantly higher than in NLRP3-/- mouse tissues, demonstrating an essential role of NLRP3 in M-induced vascular leakages in mice. Therefore, we propose that upon DENV infection, M interacts with NLRP3 to facilitate inflammasome activation and IL-1ß secretion, which lead to the induction of endothelial permeability and vascular leakage in mouse tissues. The important role of the DENV-M-NLRP3-IL-1ß axis in the induction of vascular leakage provides new insights into the mechanisms underlying DENV pathogenesis and DENV-associated DHF and DSS development.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen, and infections by this virus are prevalent in over 100 tropical and subtropical countries or regions, with approximately 2.5 billion people at risk. DENV infection induces a spectrum of clinical symptoms, ranging from classical dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Therefore, it is important to understand the mechanisms underlying DENV pathogenesis. In this study, we reveal that the DENV membrane protein (M) interacts with the host NLRP3 protein to promote NLRP3 inflammasome activation, which leads to the activation and release of a proinflammatory cytokine, interleukin-1 beta (IL-1ß). More importantly, we demonstrate that M protein can induce vascular permeability and vascular leakage and that NLRP3 is required for M-induced vascular leakage in mouse tissues. Collectively, this study reveals a distinct mechanism underlying DENV pathogeneses and provides new insights into the development of therapeutic agents for DENV-associated diseases.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Endotélio Vascular/imunologia , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteínas da Matriz Viral/metabolismo , Animais , Permeabilidade Capilar , Células Cultivadas , Dengue/patologia , Dengue/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/fisiologia , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...