Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 175: 28-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691923

RESUMO

The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.


Assuntos
Cognição , Estimulação Encefálica Profunda , Hipocampo , Lobo Parietal , Ritmo Teta , Estimulação Encefálica Profunda/métodos , Ritmo Teta/fisiologia , Hipocampo/fisiologia , Masculino , Humanos , Lobo Parietal/fisiologia , Cognição/fisiologia , Memória Episódica , Feminino , Giro do Cíngulo/fisiologia , Adulto
2.
Nat Commun ; 14(1): 5283, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648692

RESUMO

The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.


Assuntos
Doença de Alzheimer , Gastrópodes , Humanos , Animais , Acetilcolina/farmacologia , Encéfalo , Transtornos da Memória , Escopolamina/farmacologia , Colinérgicos
3.
Neuropsychologia ; 147: 107595, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32871132

RESUMO

Human data collected using noninvasive imaging techniques have established the importance of parietal regions towards episodic memory retrieval, including the angular gyrus and posterior cingulate cortex. Such regions comprise part of a putative core episodic retrieval network. In free recall, comparisons between contextually appropriate and inappropriate recall events (i.e. prior list intrusions) provide the opportunity to study memory retrieval networks supporting veridical recall, and existing findings predict that differences in electrical activity in these brain regions should be identified according to the accuracy of recall. However, prior iEEG studies, utilizing principally subdural grid electrodes, have not fully characterized brain activity in parietal regions during memory retrieval and have not examined connectivity between core recollection areas and the hippocampus or prefrontal cortex. Here, we employed a data set obtained from 100 human patients implanted with stereo EEG electrodes for seizure mapping purposes as they performed a free recall task. This data set allowed us to separately analyze activity in midline versus lateral parietal brain regions, and in anterior versus posterior hippocampus, to identify areas in which retrieval-related activity predicted the recollection of a correct versus an incorrect memory. With the wide coverage afforded by the stereo EEG approach, we were also able to examine interregional connectivity. Our key findings were that differences in gamma band activity in the angular gyrus, precuneus, posterior temporal cortex, and posterior (more than anterior) hippocampus discriminated accurate versus inaccurate recall as well as active retrieval versus memory search. The left angular gyrus exhibited a significant power decrease preceding list intrusions as well as unique phase-amplitude coupling properties, whereas the prefrontal cortex was unique in exhibiting a power increase during list intrusions. Analysis of connectivity revealed significant hemispheric asymmetry, with relatively sparse left-sided functional connections compared to the right hemisphere. One exception to this finding was elevated connectivity between the prefrontal cortex and left angular gyrus. This finding is interpreted as evidence for the engagement of prefrontal cortex in memory monitoring and mnemonic decision-making.


Assuntos
Memória Episódica , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rememoração Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...