Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0208522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35900099

RESUMO

Baicalein (BE) is a promising antifungal small-molecule compound with an extended antifungal spectrum, good synergy with fluconazole, and low toxicity, but its target protein and antifungal mechanism remain elusive. In this study, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. Eno1 acts as a key therapeutic target of the drug, as BE had no antifungal activity against the eno1 null mutant in a Galleria mellonella model of C. albicans infection. To investigate the mechanism of action, we solved the crystal structure of C. albicans Eno1(CaEno1) and then compared the difference between this structure and that of Eno1 from humans. The predicted primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Both positions S269 and K273 have different residues in the human Eno1 (hEno1). This finding suggests that BE may bind selectively to CaEno1, which would limit the potential for side effects in humans. Our findings demonstrate that Eno1 is a target protein of BE and thus may serve as a novel target for the development of antifungal therapeutics acting through the inhibition of glycolysis. IMPORTANCE Baicalein (BE) is a promising antifungal agent which has been well characterized, but its target protein is still undiscovered. The protein Eno1 plays a crucial role in the survival of Candida albicans. However, there are few antifungal agents which inhibit the functions of Eno1. Here, we found that BE can function against Candida albicans by disrupting glycolysis through targeting Eno1 and inhibiting its function. We further solved the crystal structure of C. albicans Eno1(CaEno1) and predicted that the primary binding site of BE on CaEno1 is between amino acids D261 and W274, with D263, S269, and K273 playing critical roles in the interaction with BE. Our findings will be helpful to get specific small-molecule inhibitors of CaEno1 and open the way for the development of new antifungal therapeutics targeted at inhibiting glycolysis.


Assuntos
Antifúngicos , Candida albicans , Aminoácidos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/farmacologia , Proteínas de Ligação a DNA/metabolismo , Flavanonas , Proteínas Fúngicas , Glicólise , Humanos , Testes de Sensibilidade Microbiana , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/farmacologia
2.
Bioorg Med Chem Lett ; 25(1): 34-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466190

RESUMO

A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 µg/ml, decreased the MIC80 of fluconazole from 128.0 µg/ml to 1.0-0.5 µg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.


Assuntos
Amidas/química , Ácidos Cafeicos/química , Candida albicans/efeitos dos fármacos , Desenho de Fármacos , Fluconazol/química , Amidas/administração & dosagem , Ácidos Cafeicos/administração & dosagem , Candida albicans/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/fisiologia , Sinergismo Farmacológico , Fluconazol/administração & dosagem , Testes de Sensibilidade Microbiana/métodos
3.
Yao Xue Xue Bao ; 49(8): 1097-104, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25322549

RESUMO

The incidence of systemic fungal infections have increased dramatically, moreover, drug resistance including either primary (intrinsic) or secondary (acquired) resistance, becomes one of the main reasons accounting for the failure of treating invasive fungal infections in the past decades. Nowadays, clinically available antifungal drugs are limited and their combination in antifungal therapy was not effective. It is expected to be a new strategy to synergistically sensitize antifungal drugs against drug-resistant fungi by using new small molecules. Based on the study in our research group and the reported work of others, we reviewed the research of the natural products which have synergistic effect with the antifungal agents against drug-resistant fungi. This review focused on the resource, structure, pharmacological activity, and action mechanism of the compounds, as well as somewhat in common, and would provide theoretical base for seeking new drug against drug-resistance fungi.


Assuntos
Antifúngicos/química , Produtos Biológicos/química , Fungos/efeitos dos fármacos , Antifúngicos/farmacologia , Produtos Biológicos/farmacologia , Sinergismo Farmacológico
4.
Yao Xue Xue Bao ; 49(11): 1563-8, 2014 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-25757282

RESUMO

Abstract: Our previous work revealed berberine can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, which suggested that berberine has synergistic antifungal activity with fluconazole. Preliminary SAR of berberine needs to be studied for the possibility of investigating its target and SAR, improving its drug-likeness, and exploring new scaffold. In this work, 13-substitutited benzyl berberine derivatives and N-benzyl isoquinoline analogues were synthesized and characterized by 1H NMR and MS. Their synergetic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The 13-substitutited benzyl berberine derivatives 1a-1e exhibited comparable activity to berberine, which suggested that the introduction of functional groups to C-13 can maintain its activity. The N-benzyl isoquinolines, which were designed as analogues of berberine with its D ring opened, exhibited lower activity than berberine. However, compound 2b, 2c, and 4b showed moderate activity, which indicated that berberine may be deconstructed to new scaffold with synergistic antifungal activity with fluconazole. The results of our research may be helpful to the SAR studies on its other biological activities.


Assuntos
Antifúngicos/farmacologia , Berberina/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Farmacorresistência Fúngica , Sinergismo Farmacológico , Isoquinolinas/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...