Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Neural Regen Res ; 20(3): 873-886, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886959

RESUMO

JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-ß. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-ß42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-ß42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-ß42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-ß42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-ß42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.

2.
Angew Chem Int Ed Engl ; : e202406407, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862386

RESUMO

The design of admire hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid-assisted training is designed to enable multiple improvement of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The acid-assisted training is simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid-containing poly (sodium acrylate) hydrogels newly generate anti-swelling and self-healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid-containing hydrogels is further fully transformed via acid-infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully-trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully-trained hydrogels to ensure superior stretchability of 8.6. The acid-assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid-assisted training strategy here is general for poly (sodium acrylate) hydrogels.

3.
Angew Chem Int Ed Engl ; : e202405846, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871656

RESUMO

Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes. In this mini review, we highlight an emerging field of interfacial science that isolates the impact of specific chemical species by preparing precisely-defined EEIs and visualizing the reactivity of their individual components using single-entity characterization techniques. We highlight the broad applicability and versatility of these methods, along with current state-of-the-art instrumentation and future opportunities for these approaches to address key scientific challenges related to batteries, chemical separations, and fuel cells. We establish that controlled preparation of well-defined electrodes combined with single entity characterization will be crucial to filling key knowledge gaps and advancing the theories used to describe and predict chemical and physical processes occurring at EEIs and accelerating new materials discovery for energy applications.

4.
Adv Sci (Weinh) ; : e2400953, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885424

RESUMO

The thermal runaway issue represents a long-standing obstacle that retards large-scale applications of lithium metal batteries. Various approaches to inhibit thermal runaway suffer from some intrinsic drawbacks, either being irreversible or delayed thermal protection. Herein, this work has explored thermo-responsive lower critical solution temperature (LCST) ionic liquid-based electrolytes, which provides reversible overheating protection for batteries with warning and shut-down stages, well corresponding to an initial stage of thermal runaway process. The batteries could function stably below 70 °C as a working mode, while demonstrating a warning mode above 80 °C with a noticeable reduction in specific capacitance to delay temperature increase of batteries. In terms of 110 °C as a critically dangerous temperature, a shut-down mode is designed to minimize the thermal energy releasing as the batteries are barely chargeable and dischargeable. Dynamically growing polymeric particles above LCST contributed to such an intelligent and mild control on specific capacitance. Larger size will occupy larger surfaces of electrodes and close more pores of separators, enabling a gradual suppressing of Li+ transfer and reactions. The present work demonstrated a scientific design of thermoresponsive LCST electrolytes with a superiorly precise and intelligent control of electrochemical performances to achieve self-adapted overheating protections.

5.
Mater Horiz ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814016

RESUMO

Smart windows always respond to single stimuli, which cannot satisfy various needs in practical applications. Smart windows that integrate thermotropic, electrochromic and power-generating functions in one device is highly challenging yet important in satisfying on-demand light modulation and energy efficiency in practical applications. Herein, a thermoresponsive lower critical solution temperature (LCST) ion gel was fabricated via a facile in situ polymerization of butyl acrylate in a conventional ionic liquid to explore "all in one" smart windows. The ion gel-assembled smart windows are thermotropic and electrochromic with a reliable adjustment of light transparency as well as power-generating, enabled by the ionic Soret effect of ionic liquids. Additionally, the ion gels demonstrated self-defensive robust mechanical properties, thermal insulating and antifogging properties. With such an interdisciplinary and comprehensive study of the ion gels, the LCST ion gels could fulfil the requirements of genius windows with high energy-saving potential and exceptional climate adaptability, such as shut-down of light transmission in summer, daily solar energy collection, and colour changes on demand. It conceptually updates smart windows from an energy saving to an energy supplier in buildings. It is the first time to explore the "all in one" smart windows based on integrated multifunctional ionic liquids, which could greatly bridge the gap between the materials and buildings to accelerate practical applications of smart windows.

6.
Nat Metab ; 6(6): 1076-1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777856

RESUMO

Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host-microbiota axis in the colon, part of a larger gut-brain axis, that regulates host metabolism and body weight.


Assuntos
Colo , Células Enteroendócrinas , Microbioma Gastrointestinal , Obesidade , Animais , Células Enteroendócrinas/metabolismo , Camundongos , Colo/microbiologia , Colo/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Eixo Encéfalo-Intestino , Hiperfagia/metabolismo
7.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675532

RESUMO

Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1ß, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.


Assuntos
Anti-Inflamatórios , Simulação de Acoplamento Molecular , NF-kappa B , Óxido Nítrico , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Relação Estrutura-Atividade
8.
Chem Commun (Camb) ; 60(39): 5165-5168, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639641

RESUMO

Magnetic responsive ionic liquid (MIL) demonstrated an advanced photomobility in confined narrow spaces through the doping of photoresponsive azobenzene by the interplay of supramolecular π-cations. Moreover, reversible physisorption/desorption of CO2 was achieved based on the photocontrolled solid-liquid transitions of the mixtures. Our approach opens opportunities to obtain multi-stimuli response through the coordinated supramolecular interplay of each responsive component.

9.
Talanta ; 274: 126004, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564824

RESUMO

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Assuntos
Corantes Fluorescentes , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Espécies Reativas de Nitrogênio/análise , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Imagem Óptica , Animais , Enxofre/química , Enxofre/análise
10.
Cell Prolif ; : e13631, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453465

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiac organoids (COs) have shown great potential in modelling human heart development and cardiovascular diseases, a leading cause of global death. However, several limitations such as low reproducibility, limited vascularization and difficulty in formation of cardiac chamber were yet to be overcome. We established a new method for robust generation of COs, via combination of methodologies of hiPSC-derived vascular spheres and directly differentiated cardiomyocytes from hiPSCs, and investigated the potential application of human COs in cardiac injury modelling and drug evaluation. The human COs we built displayed a vascularized and chamber-like structure, and hence were named vaschamcardioids (vcCOs). These vcCOs exhibited approximately 90% spontaneous beating ratio. Single-cell transcriptomics identified a total of six cell types in the vcCOs, including cardiomyocytes, cardiac precursor cells, endothelial cells, fibroblasts, etc. We successfully recaptured the processes of cardiac injury and fibrosis in vivo on vcCOs, and showed that the FDA-approved medication captopril significantly attenuated cardiac injury-induced fibrosis and functional disorders. In addition, the human vcCOs exhibited an obvious drug toxicity reaction to doxorubicin in a dose-dependent manner. We developed a three-step method for robust generation of chamber-like and vascularized complex vcCOs, and our data suggested that vcCOs might become a useful model for understanding pathophysiological mechanisms of cardiovascular diseases, developing intervention strategies and screening drugs.

11.
IEEE Trans Vis Comput Graph ; 30(5): 2538-2548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437076

RESUMO

Stylized avatars are common virtual representations used in VR to support interaction and communication between remote collaborators. However, explicit expressions are notoriously difficult to create, mainly because most current methods rely on geometric markers and features modeled for human faces, not stylized avatar faces. To cope with the challenge of emotional and expressive generating talking avatars, we build the Emotional Talking Avatar Dataset which is a talking-face video corpus featuring 6 different stylized characters talking with 7 different emotions. Together with the dataset, we also release an emotional talking avatar generation method which enables the manipulation of emotion. We validated the effectiveness of our dataset and our method in generating audio based puppetry examples, including comparisons to state-of-the-art techniques and a user study. Finally, various applications of this method are discussed in the context of animating avatars in VR.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38393838

RESUMO

In recent years, data-driven soft sensor modeling methods have been widely used in industrial production, chemistry, and biochemical. In industrial processes, the sampling rates of quality variables are always lower than those of process variables. Meanwhile, the sampling rates among quality variables are also different. However, few multi-input multi-output (MIMO) sensors take this temporal factor into consideration. To solve this problem, a deep-learning (DL) model based on a multitemporal channels convolutional neural network (MC-CNN) is proposed. In the MC-CNN, the network consists of two parts: the shared network used to extract the temporal feature and the parallel prediction network used to predict each quality variable. The modified BP algorithm makes the blank values generated at unsampled moments not participate in the backpropagation (BP) process during training. By predicting multiple quality variables of two industrial cases, the effectiveness of the proposed method is verified.

13.
Small ; : e2310186, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059820

RESUMO

Developing electrolytes combining solid-like instinct stability and liquid-like conducting performance will be satisfactory for efficient and durable Li-ion batteries. Herein lamellar lyotropic liquid crystals (LLCs) demonstrate high-voltage windows, efficient charge transport, and inherent thermal safety as solid-state electrolytes in lithium-ion batteries. Lamellar LLCs are simply prepared by nanosegregation of [C16 Mim][BF4 ] and LiBF4 /Propylene carbonate (PC) liquid solutions, which induce lamellar assembly of the liquids as dynamic conducting pathways. Broadened liquid conducting pathways will boost the conducting performance of the LLC electrolytes. The lyotropic lamellar nanostructures enable liquid-like ion conductivity of the LLC electrolytes at ambient temperatures, as well as provide solid-like stability for the electrolytes to resist high voltage and flammability overwhelming to LiBF4 /PC liquid electrolytes. Despite minor consumption of PC solvents (34.5 wt.%), the lamellar electrolytes show energy conversion efficiency comparable to the liquid electrolytes (PC wt. 92.8%) in Li/LiFePO4 batteries under ambient temperatures even at a 2 C current density, and exhibit attractively robust stability after 200th cyclic charge/discharge even under 60 °C. The work demonstrates LLC electrolytes have great potential to supersede traditional liquid electrolytes for efficient and durable Lithium-ion (Li-ion) batteries.

14.
ACS Nano ; 17(22): 23194-23206, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926964

RESUMO

Design of admirable conductive hydrogels combining robust toughness, soft flexibility, desirable conductivity, and freezing resistance remains daunting challenges for meeting the customized and critical demands of flexible and wearable electronics. Herein, a promising and facile strategy to prepare hydrogels tailored to these anticipated demands is proposed, which is prepared in one step by homogeneous cross-linking of acrylamide using hydrophobic divinylbenzene stabilized by micelles under saturated high-saline solutions. The influence of high-saline environments on the hydrogel topology and mechanical performance is investigated. The high-saline environments suppress the size of hydrophobic cross-linkers in micelles during hydrogel polymerization, which weaken the dynamic hydrophobic associations to soften the hydrogels. Nevertheless, the homogeneous cross-linked networks ensure antifracture during ultralarge deformations. The obtained hydrogels show special mechanical performance combining extremely soft deformability and antifracture features (Young's modulus, 5 kPa; stretchability, 10200%; toughness, 134 kJ m-2; and excellent anticrack propagation). The saturated-saline environments also endow the hydrogels with desirable ion conductivity (106 mS cm-1) and freezing resistance (<20 °C). These comprehensive properties of the obtained hydrogels are quite suitable for flexible electronic applications, which is demonstrated by the high sensitivity and durability of the derived strain sensors.

15.
Food Funct ; 14(23): 10443-10458, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37916301

RESUMO

Individuals with rotating and night shift work are highly susceptible to developing metabolic disorders such as obesity and diabetes. This is primarily attributed to disruptions in the circadian rhythms caused by activities and irregular eating habits. Time-restricted feeding (tRF) limits the daily eating schedules and has been demonstrated to markedly improve several metabolic disorders. Although an intricate relationship exists between tRF and circadian rhythms, the underlying specific mechanism remains elusive. We used a sleep disruption device for activity interference and established a model of circadian rhythm disorder in mice with different genetic backgrounds. We found that circadian rhythm disruption led to abnormal hormone secretion in the gut and elevated insulin resistance. tRF improved metabolic abnormalities caused by circadian rhythm disruption, primarily by restoring the gut hormone secretion rhythm and activating brown fat thermogenesis. The crucial function of brown fat in tRF was confirmed using a mouse model with brown fat removal. We demonstrated that chenodeoxycholic acid (CDCA) effectively improved circadian rhythm disruption-induced metabolic disorders by restoring brown fat activation. Our findings demonstrate the potential benefits of CDCA in reversing metabolic disadvantages associated with irregular circadian rhythms.


Assuntos
Tecido Adiposo Marrom , Doenças Metabólicas , Humanos , Comportamento Alimentar/fisiologia , Obesidade , Ritmo Circadiano , Hormônios
16.
ACS Sens ; 8(11): 4020-4030, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37917801

RESUMO

Salicylic acid (SA) is one of the chemical molecules, involved in plant growth and immunity, thereby contributing to the control of pests and pathogens, and even applied in fruit and vegetable preservation. However, only a few tools have ever been designed or executed to understand the physiological processes induced by SA or its function in plant immunity and residue detection in food. Hence, three Rh6G-based fluorogenic chemosensors were synthesized to detect phytohormone SA based on the "OFF-ON" mechanism. The probes showed high selectivity, ultrafast response time (<60 s), and nanomolar detection limit for SA. Moreover, the probe possessed outstanding profiling that can be successfully used for SA imaging of callus and plants. Furthermore, the fluorescence pattern indicated that SA could occur in the distal transport in plants. These remarkable results contribute to improving our understanding of the multiple physiological and pathological processes involved in SA for plant disease diagnosis and for the development of immune activators. In addition, SA detection in some agricultural products used probes to extend the practical application because its use is prohibited in some countries and is harmful to SA-sensitized persons. Interestingly, the as-obtained test paper displayed that SA could be imaged by ultraviolet (UV) and was directly visible to the naked eye. Given the above outcomes, these probes could be used to monitor SA in vitro and in vivo, including, but not limited to, plant biology, food residue detection, and sewage detection.


Assuntos
Reguladores de Crescimento de Plantas , Ácido Salicílico , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Reguladores de Crescimento de Plantas/química
17.
ACS Appl Mater Interfaces ; 15(37): 44469-44481, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676918

RESUMO

Controlling ion desolvation, transport, and charge transfer at the electrode-electrolyte interface (EEI) is critical to enable the rational design of the efficient and selective separation of targeted heavy metals and the decontamination of industrial wastewater. The main challenge is to sufficiently resolve and interrogate the desolvation of solvated metal ions and their subsequent electroreduction at the EEI and establish pathways to modulate these intermediate steps to achieve efficient energy transfer for targeted reactive separations. Herein, we obtained a predictive understanding of modulating the desolvation and electrosorption of Pb2+ cations using the hydrophobic ionic liquid 1-ethyl-3-methylimidazolium chloride (EMIMCl) in aqueous electrolyte. We revealed the formation of a compact interphase layer consisting of EMIMCl-Pb complexes under an applied electric field using operando electrochemical Raman spectroscopy, atomic force microscopy, and electrochemical impedance spectroscopy measurements combined with classical molecular dynamics simulations. A lower negative potential was shown to result in the formation of a well-oriented layer with the positive imidazolium ring of EMIMCl lying perpendicular to the electrode and the hydrophobic alkyl chain extending into the bulk electrolyte. This oriented layer, which formed from a dilute concentration of EMIMCl added to the electrolyte, was demonstrated to facilitate desolvation of incoming solvated Pb2+ cations and decrease the charge transfer resistance for Pb electrodeposition, which has important implications for the selective removal of Pb from contaminated mixtures. Overall, our findings open up new opportunities to modulate ion desolvation using hydrophobic ionic liquids in aqueous electrolytes for efficient heavy-metal separation.

18.
Opt Express ; 31(18): 29491-29503, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710748

RESUMO

We demonstrate a scheme to realize high-efficiency entanglement of two microwave fields in a dual opto-magnomechanical system. The magnon mode simultaneously couples with the microwave cavity mode and phonon mode via magnetic dipole interaction and magnetostrictive interaction, respectively. Meanwhile, the phonon mode couples with the optical cavity mode via radiation pressure. Each magnon mode and optical cavity mode adopts a strong red detuning driving field to activate the beam splitter interaction. Therefore, the entangled state generated by the injected two-mode squeezed light in optical cavities can be eventually transferred into two microwave cavities. A stationary entanglement E a 1 a 2 =0.54 is obtained when the input two-mode squeezed optical field has a squeezing parameter r = 1. The entanglement E a 1 a 2 increases as the squeezing parameter r increases, and it shows the flexible tunability of the system. Meanwhile, the entanglement survives up to an environmental temperature about 385 mK, which shows high robustness of the scheme. The proposed scheme provides a new mechanism to generate entangled microwave fields via magnons, which enables the degree of the prepared microwave entanglement to a more massive scale. Our result is useful for applications which require high entanglement of microwave fields like quantum radar, quantum navigation, quantum teleportation, quantum wireless fidelity (Wi-Fi) network, etc.

19.
Org Biomol Chem ; 21(33): 6783-6788, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565619

RESUMO

Salicylic acid (SA) is a key hormone that regulates plant growth and immunity, and understanding the physiologic processes induced by SA enables the development of highly pathogen-resistant crops. Here, we report the synthesis of three new SA-sensors (R1-R3) from hydroxyphenol derivatives of a rhodamine-acylhydrazone scaffold and their characterization by NMR and HRMS. Spectroscopic analyses revealed that structural variations in R1-R3 resulted in sensors with different sensitivities for SA. Sensor R2 (with the 3-hydroxyphenyl modification) outperformed R1 (2-hydroxyphenyl) and R3 (4-hydroxyphenyl). The SA-detection limit of R2 is 0.9 µM with an ultra-fast response time (<60 s). In addition, their plant imaging indicated that designed sensor R2 is useful for the further study of SA biology and the discovery and development of new inducers of plant immunity.


Assuntos
Células Vegetais , Ácido Salicílico , Rodaminas/química , Ácido Salicílico/análise , Ácido Salicílico/química , Células Vegetais/química , Corantes , Plantas
20.
ACS Appl Mater Interfaces ; 15(32): 38878-38887, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534699

RESUMO

Constructing elastic electrodes with high mechanical and electrochemical stability remains a challenge in developing flexible supercapacitors. Instability of elastic composite electrodes stems from detachment of noncovalently associated electroactive components from elastic substrates under cyclic deformations. Herein, a novel all-organic copolymer consisting of polypyrrole grafted from a polyacrylate elastomer is proposed as elastic electrodes for stretchable supercapacitors. The single copolymer is obtained by graft polymerization in the swollen state, characterized by a wrinkled polypyrrole coating covalently attached on an elastic core. The copolymer is intrinsically elastic and maintains structural integrity under bending, twisting, and stretching deformations to ensure stable electrochemical performance. In addition, the grafted polypyrrole aggregates densely under the constraint of the backbone and gives a competitive conductivity of 41.6 S cm-1. A stretchable supercapacitor is constructed using the copolymer as electrodes and an acid hydrogel as an electrolyte, resulting in a specific capacitance of 430 mF cm-2. The supercapacitor delivers a capacitance retention of 100% after 1000 stretching-releasing cycles, exhibiting mechanical and electrochemical reliability under elastic deformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...