Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(6): 5377-5392, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816691

RESUMO

Pathologic hyperreactive inflammatory responses occur when there is excessive activation of a proinflammatory NF-κB pathway and a reduced cytoprotective NRF2 cascade. The noncytotoxic, highly selective COX-2 inhibitory flavonol-enriched butanol fraction (UaB) from Uvaria alba (U. alba) was investigated for its inflammatory modulating potential by targeting NF-κB activation and NRF2 activity. Enzyme-linked immunosorbent assay was initially performed to measure levels of proinflammatory mediators [nitric oxide (NO), prostaglandin E2, and reactive oxygen species (ROS)] and cytokines [tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6], followed by reverse transcription-polymerase chain reaction and western blotting to determine mRNA and protein expression, respectively. Using immunofluorescence staining combined with western blot analysis, the activation of NF-κB was further investigated. NRF2 activity was also measured using a luciferase reporter assay. UaB abrogated protein and mRNA expressions of inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1ß, and IL-6 in RAW 264.7 macrophages, thereby suppressing the production of proinflammatory mediators and cytokines. This was further validated when a concentration-dependent decrease in NO and ROS production was observed in zebrafish (Danio rerio) larvae. UaB also increased NRF2 activity in HaCaT/ARE cell line and attenuated NF-κB activation by inhibiting the nuclear translocation of transcription factor p65 in RAW 264.7 macrophages. Nontargeted LC-MS analysis of UaB revealed the presence of the flavonols quercitrin (1), quercetin (2), rutin (3), kaempferol (4), and kaempferol 3-O-rutinoside (5). Molecular docking indicates that major flavonol aglycones have high affinity toward COX-2 NSAID-binding sites, TNF-α, and TNF-α converting enzyme, while the glycosylated flavonoids showed strong binding toward iNOS and IKK-all possessing dynamic stability when performing molecular dynamics simulations at 140 ns. This is the first report to have elucidated the mechanistic anti-inflammatory potential of the Philippine endemic plant U. alba.

2.
Comb Chem High Throughput Screen ; 26(3): 459-488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34533442

RESUMO

The ongoing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has been proven to be more severe than the previous coronavirus outbreaks due to the virus' high transmissibility. With the emergence of new variants, this global phenomenon took a more dramatic turn, with many countries recently experiencing higher surges of confirmed cases and deaths. On top of this, the inadequacy of effective treatment options for COVID-19 aggravated the problem. As a way to address the unavailability of target-specific viral therapeutics, computational strategies have been employed to hasten and systematize the search. The objective of this review is to provide initial data highlighting the utility of polyphenols as potential prophylaxis or treatment for COVID-19. In particular, presented here are virtually screened polyphenolic compounds which showed potential as either antagonists to viral entry and host cell recognition through binding with various receptor-binding regions of SARS-CoV-2 spike protein or as inhibitors of viral replication and post-translational modifications through binding with essential SARS-CoV-2 non-structural proteins.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...