Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(9): 094102, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889940

RESUMO

Transfer integral is a crucial parameter that determines the charge mobility of organic semiconductors, and it is very sensitive to molecular packing motifs. The quantum chemical calculation of transfer integrals for all the molecular pairs in organic materials is usually an unaffordable task; fortunately, it can be accelerated by the data-driven machine learning method now. In this work, we develop machine learning models based on artificial neutral networks to predict transfer integrals accurately and efficiently for four typical organic semiconductor molecules: quadruple thiophene (QT), pentacene, rubrene, and dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). We test various forms of features and labels and evaluate the accuracy of different models. With the implementation of a data augmentation scheme, we have achieved a very high accuracy with the determination coefficient of 0.97 and mean absolute error of 4.5 meV for QT, and similar accuracy for the other three molecules. We apply these models to studying charge transport in organic crystals with dynamic disorders at 300 K and obtain the charge mobility and anisotropy in perfect agreement with the brutal force quantum chemical calculation. If more molecular packings representing the amorphous phase of organic solids are supplemented to the dataset, the current models can be refined to study charge transport in organic thin films with polymorphs and static disorders.

2.
Invest Ophthalmol Vis Sci ; 61(2): 1, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32031573

RESUMO

Purpose: This study aimed to explore the role of the protein kinase A (PKA) pathway in proliferative vitreoretinopathy (PVR) and the effect of the PKA inhibitor H89 on experimental PVR. Methods: Epiretinal membranes (ERMs) were acquired from PVR patients and analyzed by frozen-section immunofluorescence. An in vivo model was developed by intravitreal injecting rat eyes with ARPE-19 cells and platelet-rich plasma, and changes in eye structures and vision function were observed. An in vitro epithelial-mesenchymal transition (EMT) cell model was established by stimulating ARPE-19 cells with transforming growth factor (TGF)-ß. Alterations in EMT-related genes and cell function were detected. Mechanistically, PKA activation and activity were explored to assess the relationship between TGF-ß1 stimulation and the PKA pathway. The effect of H89 on the TGF-ß-Smad2/3 pathway was detected. RNA sequencing was used to analyze gene expression profile changes after H89 treatment. Results: PKA was activated in human PVR membranes. In vivo, H89 treatment protected against structural changes in the retina and prevented decreases in electroretinogram b-wave amplitudes. In vitro, H89 treatment inhibited EMT-related gene alterations and partially reversed the functions of the cells. TGF-ß-induced PKA activation was blocked by H89 pretreatment. H89 did not affect the phosphorylation or nuclear translocation of regulatory Smad2/3 but increased the expression of inhibitory Smad6. Conclusions: PKA pathway activation is involved in PVR pathogenesis, and the PKA inhibitor H89 can effectively inhibit PVR, both in vivo and in vitro. Furthermore, the protective effect of H89 is related to an increase in inhibitory Smad6.


Assuntos
Isoquinolinas/antagonistas & inibidores , Sulfonamidas/antagonistas & inibidores , Vitreorretinopatia Proliferativa/tratamento farmacológico , Idoso , Animais , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Eletrorretinografia , Membrana Epirretiniana/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Isoquinolinas/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina/efeitos dos fármacos , Proteínas Smad/fisiologia , Sulfonamidas/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores
3.
ACS Macro Lett ; 9(9): 1249-1254, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638617

RESUMO

We developed a polymer-drug strategy to explore anticancer polymers. A series of monomers containing groups with potential anticancer activity have been facilely prepared through the Biginelli reaction. These monomers were used to produce water-soluble polymers through convenient radical copolymerization. The resulting polymers are biocompatible and can be directly used to suppress proliferation of different cancer cells without the release of small molecules. Theoretical calculations revealed that Biginelli groups in polymers had strong interaction with the Eg5 protein, which is highly expressed in cancer cells and is closely related to cell mitosis. Subsequent cell experiments confirmed that a screened polymer is efficient in inhibiting mitosis in different cancer cells. Our study of exploring functional polymers via the combination of multicomponent reactions and theoretical calculation resulted in promising anticancer polymers, which might pave a path for de novo designing of functional polymers and have important implications in the fields of organic, computational, and polymer chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...