Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311032

RESUMO

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.

2.
Brain Commun ; 3(4): fcab285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34939032

RESUMO

Animals suffering from uncontrollable stress sometimes show low effort to escape stress (learned helplessness). Changes in serotonin (5-hydroxytryptamine) signalling are thought to underlie this behaviour. Although the release of 5-hydroxytryptamine is triggered by the action potential firing of dorsal raphe nuclei 5-hydroxytryptamine neurons, the electrophysiological changes induced by uncontrollable stress are largely unclear. Herein, we examined electrophysiological differences among 5-hydroxytryptamine neurons in naïve rats, learned helplessness rats and rats resistant to inescapable stress (non-learned helplessness). Five-week-old male Sprague Dawley rats were exposed to inescapable foot shocks. After an avoidance test session, rats were classified as learned helplessness or non-learned helplessness. Activity-dependent 5-hydroxytryptamine release induced by the administration of high-potassium solution was slower in free-moving learned helplessness rats. Subthreshold electrophysiological properties of 5-hydroxytryptamine neurons were identical among the three rat groups, but the depolarization-induced spike firing was significantly attenuated in learned helplessness rats. To clarify the underlying mechanisms, potassium (K+) channels regulating the spike firing were initially examined using naïve rats. K+ channels sensitive to 500 µM tetraethylammonium caused rapid repolarization of the action potential and the small conductance calcium-activated K+ channels produced afterhyperpolarization. Additionally, dendrotoxin-I, a blocker of Kv1.1 (encoded by Kcna1), Kv1.2 (encoded by Kcna2) and Kv1.6 (encoded by Kcna6) voltage-dependent K+ channels, weakly enhanced the spike firing frequency during depolarizing current injections without changes in individual spike waveforms in naïve rats. We found that dendrotoxin-I significantly enhanced the spike firing of 5-hydroxytryptamine neurons in learned helplessness rats. Consequently, the difference in spike firing among the three rat groups was abolished in the presence of dendrotoxin-I. These results suggest that the upregulation of dendrotoxin-I-sensitive Kv1 channels underlies the firing attenuation of 5-hydroxytryptamine neurons in learned helplessness rats. We also found that the antidepressant ketamine facilitated the spike firing of 5-hydroxytryptamine neurons and abolished the firing difference between learned helplessness and non-learned helplessness by suppressing dendrotoxin-I-sensitive Kv1 channels. The dendrotoxin-I-sensitive Kv1 channel may be a potential target for developing drugs to control activity of 5-hydroxytryptamine neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...