Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1374352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694621

RESUMO

Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.

2.
Front Bioeng Biotechnol ; 10: 967430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237212

RESUMO

In the interests of more flexible and less stiff bridge constructs to stimulate bone healing, the technique of far cortical locking has been designed to improve locked plating constructs in terms of stress concentration, stress shielding, and inhibition of issues around fracture healing. However, far cortical locking screws currently lack objective designs and anti-fatigue designs. This study investigates an optimization algorithm to form a special locking screw composed of various metals, which can theoretically achieve the maintenance of the excellent mechanical properties of far cortical locking constructs in terms of fracture internal fixation, while maintaining the biomechanical safety and fatigue resistance of the structure. The numerical results of our study indicate that the maximum von Mises stress of the optimized construct is less than the allowable stress of the material under each working condition while still achieving sufficient parallel interfragmentary motion. Numerical analysis of high cycle fatigue indicates that the optimized construct increases the safety factor to five. A high cycle fatigue test and defect analysis indicates that the sandwich locking constructs have better fatigue resistance. We conclude that the sandwich locking construct theoretically maintains its biomechanical safety and fatigue resistance while also maintaining excellent mechanical properties for fracture internal fixation.

3.
J Biomech ; 142: 111237, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952485

RESUMO

Myocardial infarction (MI) can induce heart failure with reduced ejection fraction (HFrEF). Systemic circulation is of importance to interact with MI-induced HFrEF. Hence, we studied the changes of myofiber stresses and peripheral hemodynamics during the progression from MI to HFrEF. MI was induced in Wistar male rats by the coronary artery ligation surgery. Physiological and hemodynamic measurements were carried out in the LV and peripheral arteries at postoperative 3 and 6 weeks, based on which LV myofiber stresses were computed and peripheral hemodynamic analysis was demonstrated. This study showed that MI significantly impaired cardiac functions and peripheral hemodynamics and altered the corresponding histological properties of cardiac wall and peripheral arterial wall, which deteriorated with time after operation. In summary, the interplay of cardiac dysfunctions and hemodynamic impairments accelerates the progression of MI-induced HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Hemodinâmica/fisiologia , Masculino , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Ratos Wistar , Volume Sistólico , Remodelação Ventricular/fisiologia
4.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591514

RESUMO

Depolarization behavior is one of the main shortcomings of (Bi0.5Na0.5)TiO3-based ceramics. Considering the undesirable efficiency of traditional modification methods, in this paper a series of 0-3 type ceramic composites 0.85(Bi0.5Na0.5)TiO3-0.11(Bi0.5K0.5)TiO3-0.04BaTiO3-x mol% ZnO (BNKT-BT-xZnO)) were synthesized by introducing ZnO nanoparticles. The results of the X-ray diffraction pattern (XRD) and energy dispersive spectroscopy (EDS) demonstrate that the majority of ZnO nanoparticles grow together to form enrichment regions, and the other Zn2+ ions diffuse into the matrix after sintering. With ZnO incorporated, the ferroelectric-ergodic relaxor transition temperature, TF-R, and depolarization temperature, Td, increase to above 120 °C and 110 °C, respectively. The research on temperature-dependent P-E loops verifies an attenuated ergodic degree induced by ZnO incorporation. For this reason, piezoelectric properties can be well-maintained below 110 °C. The electron backscatter diffraction (EBSD) was employed to investigate the stress effect. Orientation maps reveal the random orientation of all grains, excluding the impact of texture on depolarization. The local misorientation image shows that more pronounced strain appears near the boundaries, implying stress is more concentrated there. This phenomenon supports the hypothesis that potential stress suppresses depolarization. These results demonstrate that the depolarization behavior is significantly improved by the introduction of ZnO. The composites BNKT-BT-xZnO are promising candidates of lead-free ceramics for practical application in the future.

5.
Materials (Basel) ; 14(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772192

RESUMO

The characteristic transition from ferroelectric (FE) to ergodic relaxor (ER) state in (Bi0.5Na0.5)TiO3 (BNT) based lead-free ceramics provides an efficient approach to bring a highly ordered phase back to a disordered one. It would be rational to utilize this transition to improve relevant non-piezoelectric properties based on domain decomposition. In this work, different La contents were introduced to 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945Zr0.055)O3 ceramics (BNT-BZT-xLa) to induce evolution of ergodic degree. The results reveal that with increasing La content, both the FE-ER transition temperature TF-R and depolarization temperature Td shift towards room temperature, implying a deepened ergodic degree. By modulation of ergodic degree, thermally stimulated depolarization current experiment shows a higher current density peak, and corresponding pyroelectric coefficient increases from 2.46 to 2.81 µC/(cm2∙°C) at Td. For refrigeration, the indirect measurement demonstrates the ΔT maximum increases from 1.1 K to 1.4 K, indicating an enhanced electrocaloric effect. Moreover, the optimized energy storage effect is observed after La doping. With appearance of "slimmer" P-E loops, both calculated recoverable energy storage density Wrec and storage efficiency η increase to 0.23 J/cm3 and 22.8%, respectively. These results denote La doping conduces to the improvement of non-piezoelectric properties of BNT-based ceramics in a certain range. Therefore, La doping should be an adopted modification strategy for lead-free ceramics used in areas like refrigerator and pulse capacitors.

6.
J Biomech ; 126: 110642, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34325121

RESUMO

The elastic abdominal aorta and muscular femoral artery are susceptible to aneurysm and atherosclerosis, respectively. The vessel wall mechanics should be an important element for the difference. The objective of the study is to demonstrate a comparison of vessel wall mechanics between elastic and muscular arteries of juvenile and adult rats to show the changes of mechanical properties relevant to aging. The passive and active mechanical tests, theoretical analysis, and histological evaluation were carried out to investigate mechanical properties of vessel walls in the abdominal aorta and carotid and femoral arteries of young and adult rats. There are stiffening femoral artery, unchanged carotid artery, and distensible abdominal aorta in adult rats as compared with the young. The opening angle has values of 54 ± 13°, 82 ± 13°, and 94 ± 13° in the abdominal aorta and carotid and femoral arteries of adult rats, respectively, as well as 80 ± 22°, 93 ± 19°, and 100 ± 23° in the young. The findings are explained by the significantly reduced width of collagen fibers in the abdominal aorta, relatively unchanged width in the carotid artery, and significantly increased width in the femoral artery of adult rats as compared with the young. In conjunction with available literatures, we concluded that inconsistency for nonlinear age-related changes of artery wall mechanics occurs between arteries of different types, which may be a risk factor for the occurrence of abdominal aorta aneurysm and femoral artery atherosclerosis.


Assuntos
Aneurisma da Aorta Abdominal , Artérias Carótidas , Animais , Aorta Abdominal , Artéria Carótida Primitiva , Artéria Femoral , Ratos
7.
Front Bioeng Biotechnol ; 9: 646533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937215

RESUMO

It is not clear for inhalation of ultrafine metal particles in air pollution to impair human health. In the study, we aimed to investigate whether short-term (4 weeks) inhalation of ultrafine zinc particles could deteriorate the cardiac and hemodynamic functions in rats of myocardial infarction (MI). MI was induced in Wistar rats through coronary artery ligation surgery and given an inhalation of ultrafine zinc particles for 4 weeks (post-MI 4 weeks, 4 days per week, and 4 h per day). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow wave were recorded in the carotid artery and analyzed by using the Womersley model. Myocardial infarction resulted in the LV wall thinning, LV cavity dilation, remarkable decrease of ejection fraction, dp/dt Max, -dp/dt Min, myocardial strain and strain rates, and increased LV end-diastolic pressure, as well as impaired hemodynamic environment. The short-term inhalation of ultrafine zinc particles significantly alleviated cardiac and hemodynamic dysfunctions, which could protect from the MI-induced myocardial and hemodynamic impairments albeit it is unknown for the long-term inhalation.

8.
Biorheology ; 58(1-2): 27-38, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682689

RESUMO

BACKGROUND: Heart failure (HF) is a common disease globally. Ventricular assist devices (VADs) are widely used to treat HF. In contrast to the natural heart, different VADs generate different blood flow waves in the aorta. OBJECTIVE: To explore whether the different inflow rate waveforms from the ascending aorta generate far-reaching hemodynamic influences on the human aortic arch. METHODS: An aortic geometric model was reconstructed based on computed tomography data of a patient with HF. A total of five numerical simulations were conducted, including a case with the inflow rate waveforms from the ascending aorta with normal physiological conditions, two HF, and two with typical VAD support. The hemodynamic parameters, wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and the strength of the helical flow, were calculated. RESULTS: In contrast to the natural heart, numerical simulations showed that HF decreased WSS and induced higher OSI and RRT. Moreover, HF weakened helical flow strength. Pulsatile flow VADs that elevated the WSS, induced some helical flow, while continuous flow VADs could not. CONCLUSIONS: HF leads to an adverse hemodynamic environment by decreasing WSS and reducing the helical flow strength. Based upon hemodynamic effects, pulsatile flow VADs may be more advantageous than continuous flow VADs. Thus, pulsatile flow VADs may be a better option for patients with HF.


Assuntos
Aorta Torácica , Baías , Aorta , Aorta Torácica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Humanos , Modelos Cardiovasculares , Estresse Mecânico
9.
Biomed Eng Online ; 20(1): 19, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563284

RESUMO

BACKGROUND: Cone-shaped vena cava filters (VCFs) are widely used to treat venous thromboembolism. However, in the long term, the problem of occlusion persists even after the filter is deployed. A previous study hypothesized that the reverse deployment of a cone-shaped VCFs may prevent filter blockage. METHODS: To explore this hypothesis, a comparative study of the traditional and reverse deployments of VCFs was conducted using a computational fluid dynamics approach. The distribution of wall shear stress (WSS) and shear stress-related parameters were calculated to evaluate the differences in hemodynamic effects between both conditions. In the animal experiment, we reversely deployed a filter in the vena cava of a goat and analyzed the blood clot distribution in the filter. RESULTS: The numerical simulation showed that the reverse deployment of a VCF resulted in a slightly higher shear rate on the thrombus, and no reductions in the oscillating shear index (OSI) and relative residence time (RRT) on the vessel wall. Comparing the traditional method with the reversely deployed cases, the shear rate values is 16.49 and 16.48 1/s, respectively; the minimal OSI values are 0.01 and 0.04, respectively; in the vicinity of the VCF, the RRT values are both approximately 5 1/Pa; and the WSS is approximately 0.3 Pa for both cases. Therefore, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. However, it is effective in capturing thrombi in the short term, as demonstrated via animal experiments. The reversely deployed cone-shaped filter captured the thrombi at its center in the experiments. CONCLUSIONS: Thus, the reverse deployment of cone-shaped filters is not advantageous when compared with the traditional method in terms of local hemodynamics. Therefore, we would not suggest the reverse deployment of the cone-shaped filter in the vena cava to prevent a potentially fatal pulmonary embolism.


Assuntos
Hemodinâmica , Modelos Biológicos , Filtros de Veia Cava , Veia Cava Inferior/fisiologia
10.
Comput Methods Biomech Biomed Engin ; 24(6): 663-672, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33215954

RESUMO

With the emerging concerns for more flexible and less stiff bridge constructs in the interest of stimulating bone healing, the technique of far cortical locking has been designed to reduce the stiffness of locked plating (LP) constructs while retaining construct strength. This study utilized simulation with diaphyseal bridge plating biomechanical models to investigate whether far cortical locking causes larger screw fracture risk than LP during rehabilitation. The fracture risk of the screws in the far cortical locking constructs increases in the non-osteoporotic and osteoporotic diaphysis compared with the screws in the LP constructs.


Assuntos
Placas Ósseas/efeitos adversos , Parafusos Ósseos/efeitos adversos , Osso Cortical/cirurgia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico
11.
Phys Chem Chem Phys ; 22(42): 24480-24489, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33089265

RESUMO

Rechargeable metal-air batteries based on superoxide discharge products are attractive due to the facile one-electron redox process of O2/O2-. Recently, a K-O2 battery has been reported that showed a significantly lower discharge/charge potential gap than the Li-O2 battery systems. Here, we perform first-principles calculations on potassium superoxide (KO2) to unravel the charge transport mechanism in this discharge product. The concentration and mobility of intrinsic carriers are calculated. The results show that hole polarons and negatively charged potassium ion vacancies are the main charge carriers. The conductivity associated with polaron hopping (2 × 10-12 S cm-1) is 8 orders of magnitude higher than that of Li2O2, and the ionic conductivity has a comparable value (1 × 10-13 S cm-1). Our calculation results can rationalize the experimental findings and provide a theoretical basis for the understanding of superoxide discharge products in metal-air batteries.

12.
J Biomech ; 111: 110021, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32927116

RESUMO

The analysis of cardiac wall stress is of importance to understand the development of heart failure (HF). The aim of the study is to carry out the cardiac mechanics analysis to show the changes of left ventricular (LV) wall stresses after LV hypertrophy (LVH) and myocardial infarction (MI). Here, LVH and MI were generated in rabbit hearts through the transverse aortic constriction (TAC) and the distal left circumflex (LCx) artery ligation operations, respectively. Physiological and CT measurements were carried out at postoperative 2 and 4 weeks, based on which a finite element (FE) model was developed to perform the mechanics computation. We found a gradual increase of end-diastolic myofiber stress in free wall and interventricular septum of LVH and MI (higher stress in the free wall than the septum). In the interventricular septum, the 4-weeks LVH group has the highest ED myofiber stresses (11.378 ± 3.022 kPa), while the 4-weeks MI group has the highest ED myofiber stresses (13.494 ± 2.835 kPa) in the free wall. LVH increased myocardial volume (3.49 ± 0.07 and 4.52 ± 0.26 ml at postoperative 2 and 4 weeks) while MI increased LV volume (from 2.75 ± 0.29 to 4.19 ± 0.27 ml). LVH and MI had different distributions of local myofiber stress.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Ventrículos do Coração/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Miocárdio , Coelhos
13.
Blood Cells Mol Dis ; 85: 102486, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841841

RESUMO

To define morphological changes in carotid and cerebral arteries in sickle cell transgenic mice (SS) as they age, a combination of ultrasound and microcomputed tomography of plastinated arteries was used to quantify arterial dimensions and changes in mice 4, 12, and 24 weeks of age. 12-week SS mice had significantly larger common carotid artery diameters than AS mice, which continued through to the extracranial and intracranial portions of the internal carotid artery (ICA). There were also side specific differences in diameters between the left and right vessels. Significant ICA tapering along its length occurred by 12- and 24-weeks in SS mice, decreasing by as much as 70%. Significant narrowing along the length was also measured in SS anterior cerebral arteries at 12- and 24-weeks, but not AS. Collectively, these findings indicate that sickle cell anemia induces arterial remodeling in 12- and 24-weeks old mice. Catalog of measurements are also provided for the common carotid, internal carotid, anterior cerebral, and middle cerebral arteries for AS and SS genotypes, as a reference for other investigators using mathematical and computational models of age-dependent arterial complications caused by sickle cell anemia.


Assuntos
Anemia Falciforme/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Envelhecimento , Anemia Falciforme/patologia , Animais , Artérias Carótidas/patologia , Artérias Cerebrais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Transgênicos , Ultrassonografia , Microtomografia por Raio-X
14.
Med Hypotheses ; 144: 109915, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32526505

RESUMO

Percutaneous ventricular restoration is an established treatment that is used in left ventricle (LV) patients with anteroapical regional wall motion abnormality, dilated LV, systolic dysfunction after anterior myocardial infarction, and poor LV ejection fraction of heart failure. A ventricular partitioning device (VPD), which can be delivered percutaneously through the aortic valve, was placed at the apex of the LV. We aimed at improving the LV hemodynamics by isolating the dysfunctional apical region. Existing VPDs used in clinics are not recyclable. If the physician must extract the device owing to disease development, the patient must undergo thoracotomy. It is well known that thoracotomy is a high-risk operation. It may even cause patients to die. Therefore, we propose a recyclable left VPD that can be remove through a recovery snare after the device is implanted into the patient's ventricle. Such novel recyclable VPD could effectively avoid thoracotomy, thus resulting in favorable outcomes with reassuring safety.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Próteses e Implantes , Volume Sistólico , Função Ventricular Esquerda
15.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397533

RESUMO

(1) Background: There are no successive treatments for heart failure with preserved ejection fraction (HFpEF) because of complex interactions between environmental, histological, and genetic risk factors. The objective of the study is to investigate changes in cardiomyocytes and molecular networks associated with HFpEF. (2) Methods: Dahl salt-sensitive (DSS) rats developed HFpEF when fed with a high-salt (HS) diet for 7 weeks, which was confirmed by in vivo and ex vivo measurements. Shotgun proteomics, microarray, Western blot, and quantitative RT-PCR analyses were further carried out to investigate cellular and molecular mechanisms. (3) Results: Rats with HFpEF showed diastolic dysfunction, impaired systolic function, and prolonged repolarization of myocytes, owing to an increase in cell size and apoptosis of myocytes. Heatmap of multi-omics further showed significant differences between rats with HFpEF and controls. Gene Set Enrichment Analysis (GSEA) of multi-omics revealed genetic risk factors involved in cardiac muscle contraction, proteasome, B cell receptor signaling, and p53 signaling pathway. Gene Ontology (GO) analysis of multi-omics showed the inflammatory response and mitochondrial fission as top biological processes that may deteriorate myocyte stiffening. GO analysis of protein-to-protein network indicated cytoskeleton protein, cell fraction, enzyme binding, and ATP binding as the top enriched molecular functions. Western blot validated upregulated Mff and Itga9 and downregulated Map1lc3a in the HS group, which likely contributed to accumulation of aberrant mitochondria to increase ROS and elevation of myocyte stiffness, and subsequent contractile dysfunction and myocardial apoptosis. (4) Conclusions: Multi-omics analysis revealed multiple pathways associated with HFpEF. This study shows insight into molecular mechanisms for the development of HFpEF and may provide potential targets for the treatment of HFpEF.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteoma , Transcriptoma , Animais , Apoptose , Ecocardiografia/métodos , Eletrocardiografia , Ontologia Genética , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Masculino , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos Dahl , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/toxicidade , Volume Sistólico , Análise Serial de Tecidos
16.
Arterioscler Thromb Vasc Biol ; 40(5): 1220-1230, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32160775

RESUMO

OBJECTIVE: Sickle cell anemia (SCA) causes chronic inflammation and multiorgan damage. Less understood are the arterial complications, most evident by increased strokes among children. Proteolytic mechanisms, biomechanical consequences, and pharmaceutical inhibitory strategies were studied in a mouse model to provide a platform for mechanistic and intervention studies of large artery damage due to sickle cell disease. Approach and Results: Townes humanized transgenic mouse model of SCA was used to test the hypothesis that elastic lamina and structural damage in carotid arteries increased with age and was accelerated in mice homozygous for SCA (sickle cell anemia homozygous genotype [SS]) due to inflammatory signaling pathways activating proteolytic enzymes. Elastic lamina fragmentation observed by 1 month in SS mice compared with heterozygous littermate controls (sickle cell trait heterozygous genotype [AS]). Positive immunostaining for cathepsin K, a powerful collagenase and elastase, confirmed accelerated proteolytic activity in SS carotids. Larger cross-sectional areas were quantified by magnetic resonance angiography and increased arterial compliance in SS carotids were also measured. Inhibiting JNK (c-jun N-terminal kinase) signaling with SP600125 significantly reduced cathepsin K expression, elastin fragmentation, and carotid artery perimeters in SS mice. By 5 months of age, continued medial thinning and collagen degradation was mitigated by treatment of SS mice with JNK inhibitor. CONCLUSIONS: Arterial remodeling due to SCA is mediated by JNK signaling, cathepsin proteolytic upregulation, and degradation of elastin and collagen. Demonstration in Townes mice establishes their utility for mechanistic studies of arterial vasculopathy, related complications, and therapeutic interventions for large artery damage due to SCA.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antracenos/farmacologia , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Remodelação Vascular/efeitos dos fármacos , Anemia Falciforme/enzimologia , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/fisiopatologia , Catepsina K/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Hemoglobinas/genética , Homozigoto , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Transgênicos , Mutação , Proteólise , Transdução de Sinais , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-32211395

RESUMO

Vertebral artery (VA) stenosis is relevant to a high early risk of recurrent stroke and basilar artery (BA) is the most common intracranial site of atherosclerotic lesions. It is important to show predictive risk factors for transient ischemic attack (TIA) or posterior infarctions. The aim of the study is to investigate morphometry and hemodynamics in intracranial vertebral and basilar arteries of health and diseased patients to enhance the risk assessment. Based on the geometrical model reconstructed from CTA images in 343 patients, a transient three-dimensional computational model was used to determine the hemodynamics. Patients were classified in symmetric, asymmetric, hypoplastic, and stenotic groups while patients in the stenotic group were divided into unilateral, bilateral, bifurcation, and tandem stenotic sub-groups. Patients in bilateral, bifurcation, and tandem stenotic sub-groups had significantly lower basilar artery diameters than other groups. Patients in the stenotic group had significantly higher surface area ratio (SAR) of high time-averaged wall shear stress gradient (TAWSSG) and higher incidence of TIAs or posterior infarctions than other groups while patients in the tandem stenotic sub-group had the highest values (SAR-TAWSSG of 57 ± 22% and TIAs or posterior infarction incidence of 54%). The high SAR-TAWSSG is predisposed to induce TIAs or posterior infarction.

18.
J R Soc Interface ; 17(163): 20190808, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32093537

RESUMO

The assessment by speckle tracking echocardiography (STE) provides useful information on regional and global left ventricular (LV) functions. The aim of the study is to investigate if STE-based strain analysis could detect the difference of pressure overload-induced myocardial remodelling between young and adult rats. Physiological, haemodynamic, histological measurements were performed post-operatively in young and adult rats with transverse aortic constriction (TAC) as well as the age-matched shams. Two-way ANOVA was used to detect the statistical difference of various measured parameters. Pressure overload decreased the ejection fraction, fractional shortening, dp/dtmax and |dp/dtmin|, but increased the LV end-diastolic (ED) pressure in adult rat hearts for nine weeks after TAC operation than those in young rat hearts. Pressure overload also resulted in different changes of peak strain and strain rate in the free wall, but similar changes in the interventricular septum of young and adult rat hearts. The changes in myocardial remodelling were confirmed by the histological analysis including the increased apoptosis rate of myocytes and collagen area ratio in the free wall of adult rat hearts of LV hypertrophy when compared with the young. Pressure overload alters myocardial components in different degrees between young and adult animals. STE-based strain analysis could detect the subtle difference of pressure overload-induced myocardial remodelling between young and adult rats.


Assuntos
Ecocardiografia , Disfunção Ventricular Esquerda , Animais , Miocárdio , Ratos , Função Ventricular Esquerda
19.
Artigo em Inglês | MEDLINE | ID: mdl-32039193

RESUMO

Although it is possible for inhalation of ultrafine particles to impair human health, its effect is not clear in patients with HFpEF. This study investigated cardiac and hemodynamic changes in hypertension-induced rats of HFpEF after inhaling ultrafine zinc particles for a while. Multiple experimental measurements were carried out in DSS rats fed with high salt (HS) and low salt (LS) diets as well as HS diet with the inhalation of ultrafine zinc particles (defined as HP). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow waves were recorded in the carotid artery and abdominal aorta and analyzed by the models of Windkessel and Womersley types. HS and HP rats were found to show lower strains on endocardium and epicardium than LS rats. The inhalation of ultrafine zinc particles further reduced the strain in the longitudinal direction on the endocardium of rats with HFpEF, but had relatively small effects on the epicardium. The inhalation of ultrafine zinc particles resulted in the increase of systemic resistance and the decrease of total vascular compliance as well as the increased PWV and induced more severe vascular stiffening in rats with HFpEF. In summary, the inhalation of ultrafine zinc particles deteriorated local myocardial dysfunctions in the LV and the hemodynamic environment in peripheral arteries in rats of HFpEF. This study is of importance to understand the mechanisms of cardiovascular impairments owing to air pollution.

20.
Med Hypotheses ; 138: 109571, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32028194

RESUMO

Percutaneous ventricular restoration (PVR) is an established treatment for patients with combined ischemic coronary artery disease and hear failure (HF). The left ventricle (LV) partitioning device is an interventional medical device that can be implanted into the ventricles of patients to reduce LV volumes, resulting in improved LV remodeling. However, the isolation surface area of the device is invariant, while the LV size of each patient is different. Thus, we designed a novel inflatable LV partitioning device. The functional volume of our ventricular isolation device can be adjusted by inflating and exhausting the device via the stomata based on a patient's ventricle size. The novel design could potentially reduce ventricular functional volume and improve the LV hemodynamic environment, thus resulting in favorable outcomes with reassuring safety and efficacy.


Assuntos
Insuficiência Cardíaca , Ventrículos do Coração , Insuficiência Cardíaca/terapia , Humanos , Próteses e Implantes , Resultado do Tratamento , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...