Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20133, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37978220

RESUMO

This paper presents a linear-nonlinear switching control strategy, called Switching Active Disturbance Rejection Control (SADRC), to enhance the disturbance rejection capability of the speed controller in a servo system. SADRC combines the advantages of Linear Active Disturbance Rejection Control (LADRC) and Nonlinear Active Disturbance Rejection Control (NLADRC), and introduces a parameter to switch between nonlinear and linear control, thereby improving the robustness of the servo system. Firstly, the mathematical model of the motor is analyzed as the starting point of the paper. Then, the basic principles of Active Disturbance Rejection Control (ADRC) are analyzed, and improvements are made to address its limitations, resulting in the design of SADRC. The parameters introduced in SADRC are analyzed to determine their appropriate ranges. Finally, the performance of SADRC is validated by comparing the rotational effects of Permanent Magnet Synchronous Motor (PMSM).

2.
Environ Sci Pollut Res Int ; 30(28): 72884-72899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37184801

RESUMO

The competitive adsorption ability and mechanisms of lead (Pb2+) and cadmium (Cd2+) by nanoplastics (NPs) with positive charges (PS-NH2) and negative charges (PS-SO3H) were investigated by using batch adsorption experiments coupled with the two-dimensional correlation spectroscopy (2D-COS) method. The adsorption isotherm results showed that PS-SO3H exhibited a higher adsorption capacity for Pb2+ or Cd2+ compared to PS-NH2. The adsorption affinity of NPs for Pb2+ was higher than that of Cd2+. The competitive adsorption results showed that Pb2+ had a more pronounced negative effect on the adsorption of Cd2+. The adsorption capacities of NPs were affected by the surface charge and solution pH. Electrostatic force was the main factor influencing PS-SO3H to capture Pb2+ and Cd2+, while chelation was the main mechanism between PS-NH2 and metals. The functional groups of NPs played significant roles in the sorption of Pb2+ or Cd2+ according to the FTIR spectra and 2D-COS analysis. This study provided new insights into the impact of NPs on the transport of other pollutants.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Microplásticos , Chumbo , Adsorção , Análise Espectral , Poluentes Químicos da Água/química , Cinética
3.
J Environ Manage ; 305: 114378, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959058

RESUMO

The application potential and environmental benefits of ground source heat pump (GSHP) systems have become the focal points of decarbonization in the building sector. Synchronized and scientific analysis of GSHP systems' environmental and economic performance, however, remains lacking. This study analyzes the application prospects of GSHP systems via a life cycle assessment-based life cycle costing method, and considers China's actual status quo. The internal and external annual costs of a GSHP system per square meter are $ 4.05 and $ 1.37, respectively. Electricity generation and steel production are key processes to improve the environmental performance of a GSHP system further. Compared with coal-based heating, a GSHP system can mitigate 65%-95% of the environmental impact and 85% of external costs, except for the metal depletion impact which is 1.5 times higher than that of coal-based heating. In Shandong Province, promoting GSHP systems can substitute up to 69.4% of the district heating area, which implies reductions in fossil depletion, greenhouse gas emissions, human health impact, ecosystem quality impact, and external costs by up to 2.37 × 1010 kg oil eq, 1.08 × 1011 kg CO2 eq, 3.87 × 105 DALY, 1.18 × 103 Species. year, and $ 2.51 × 1010, respectively. In consideration of environmental and economic aspects, a GSHP system can exhibit benefits compared with coal-based heating after 2.34 years of operation. To improve the economic and environmental performance of GSHP systems, a series of recommendations on financial subsidies, renewable energy development, inter-regional power transmission, steel scrap utilization, and hydrogen reduction steelmaking is provided.


Assuntos
Ecossistema , Temperatura Alta , China , Carvão Mineral , Humanos , Energia Renovável
4.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578021

RESUMO

To overcome the negative impact on the rheological and filtration loss properties of drilling fluids caused by elevated temperature and salts contamination, which are common in ultradeep or geothermal drilling operations, it is imperative to develop highly efficient additives used in the water-based drilling fluid. In this study, a zwitterionic copolymer P (AM/DMC/AMPS/DMAM, ADAD) was synthesized by using acrylamide (AM), cationic monomer methacrylatoethyl trimethyl ammonium chloride (DMC), anionic monomer 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and N,N-dimethylacrylamide (DMAM) through free radical copolymerization. The copolymer was characterized by 1H Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), elemental analysis, thermogravimetric analysis (TGA), and zeta potential. The rheological behavior, filtration properties, and the performance exposure to salt or calcium contamination in water-based drilling fluid were investigated. The bentonite/polymer suspension showed improved rheological and filtration properties even after aging at 160 °C or a high concentration of salt and calcium. The filtration loss can be greatly reduced by more than 50% (from 18 mL to 7 mL) by the inclusion of 2.0 wt% copolymer, while a slight increase in the filtrate loss was observed even when exposed to electrolyte contamination. Particle size distribution and zeta potential further validate the idea that zwitterionic copolymer can greatly improve the stability of base fluid suspension through positive group enhanced anchoring on the clay surface and repulsion force between negative particles. Moreover, this study can be directed towards the design and application of zwitterionic copolymer in a water-based drilling fluid.

5.
ACS Omega ; 6(31): 20577-20589, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396003

RESUMO

Effective control of shale swelling and lost circulation using drilling fluid is considered the dominant strategy for maintaining borehole stability, especially drilling operations in deep oil and gas wells. In this work, a hybrid silicate that contains lithium silicate and potassium methyl silicate (PMS) was employed as a film-forming additive to reduce shale hydration and filtration loss in the high-temperature drilling fluid. Scanning electron microscopy (SEM) results revealed that a dense quartz crystal film coating on the shale can be formed in a hybrid silicate solution when the temperature exceeds 150 °C. The in situ-formed film on the shale surface with a thickness of 60-130 µm was composed of fibrous crystalline silica. Furthermore, the aqueous hybrid silicate exhibited enhanced hydration inhibition ability by preventing water invasion of the formation. Aqueous hybrid silicate with a concentration of 0.5-3 wt % lithium silicate and 0.1-0.2 mol/L PMS was first chosen to obtain the optimum concentration according to the hydration inhibition ability and film formation characteristics. The hybrid silicate was added into a drilling fluid formulation applicable in high-pressure and high-temperature conditions, and the rheological characteristics and filtration properties were investigated. The results confirmed that drilling fluids with the addition of hybrid silicate can mitigate variation of viscosity and yield point before and after aging at 180 and 220 °C. Besides, the filtration behavior was also improved by adding hybrid silicate into the drilling fluid. A lower filtration loss was observed at the concentration of 1.0 wt % lithium silicate and 0.2 mol/L potassium methyl silicate, which showed 63 and 50% HPHT fluid loss reduction for unweighted and weighted formulations at 205 °C and 3.5 MPa, respectively. In addition, the drilling fluid featured stable rheological and filtration properties and excellent shale hydration inhibition characteristics when exposed to high temperatures, making it a promising candidate for drilling in deep oil and gas wells.

6.
Waste Manag ; 33(9): 1843-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23777667

RESUMO

A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate.


Assuntos
Carvão Mineral , Incineração/métodos , Esgotos , China , Análise Custo-Benefício , Meio Ambiente , Incineração/economia , Eliminação de Resíduos , Resíduos Sólidos , Água
7.
Angle Orthod ; 77(4): 688-93, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17605476

RESUMO

OBJECTIVE: To evaluate the characteristics of force degradation of latex elastics in clinical applications and in vitro studies. MATERIALS AND METHODS: Samples of 3/16-inch latex elastics were investigated, and 12 students between the ages of 12 and 15 years were selected for the intermaxillary and intramaxillary tractions. The elastics in the control groups were set in artificial saliva and dry room conditions and were stretched 20 mm. The repeated-measure two-way analysis of variance and nonlinear regression analysis were used to identify statistical significance. RESULTS: Overall, there were statistically significant differences between the different methods and observation intervals. At 24- and 48-hour time intervals, the force decreased during in vivo testing and in artificial saliva (P < .001), whereas there were no significant differences in dry room conditions (P > .05). In intermaxillary traction the percentage of initial force remaining after 48 hours was 61%. In intramaxillary traction and in artificial saliva the percentage of initial force remaining was 71%, and in room conditions 86% of initial force remained. Force degradation of latex elastics was different according to their environmental conditions. There was significantly more force degradation in intermaxillary traction than in intramaxillary traction. The dry room condition caused the least force loss. CONCLUSIONS: There were some differences among groups in the different times to start wearing elastics in intermaxillary traction but no significant differences in intramaxillary traction.


Assuntos
Análise do Estresse Dentário , Látex , Aparelhos Ortodônticos , Adolescente , Ar , Análise de Variância , Criança , Elasticidade , Alimentos , Humanos , Técnicas de Fixação da Arcada Osseodentária/instrumentação , Teste de Materiais , Análise de Regressão , Saliva , Saliva Artificial , Resistência à Tração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...