Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 7: 601496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363196

RESUMO

Rapid population growth, climate change, intensive monoculture farming, and resource depletion are among the challenges that threaten the increasingly vulnerable global agri-food system. Heavy reliance on a few major crops is also linked to a monotonous diet, poor dietary habits, and micronutrient deficiencies, which are often associated with diet-related diseases. Diversification-of both agricultural production systems and diet-is a practical and sustainable approach to address these challenges and to improve global food and nutritional security. This strategy is aligned with the recommendations from the EAT-Lancet report, which highlighted the urgent need for increased consumption of plant-based foods to sustain population and planetary health. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized African legume, has the potential to contribute to improved food and nutrition security, while providing solutions for environmental sustainability and equity in food availability and affordability. This paper discusses the potential role of Bambara groundnut in diversifying agri-food systems and contributing to enhanced dietary and planetary sustainability, with emphasis on areas that span the value chain: from genetics, agroecology, nutrition, processing, and utilization, through to its socioeconomic potential. Bambara groundnut is a sustainable, low-cost source of complex carbohydrates, plant-based protein, unsaturated fatty acids, and essential minerals (magnesium, iron, zinc, and potassium), especially for those living in arid and semi-arid regions. As a legume, Bambara groundnut fixes atmospheric nitrogen to improve soil fertility. It is resilient to adverse environmental conditions and can yield on poor soil. Despite its impressive nutritional and agroecological profile, the potential of Bambara groundnut in improving the global food system is undermined by several factors, including resource limitation, knowledge gap, social stigma, and lack of policy incentives. Multiple research efforts to address these hurdles have led to a more promising outlook for Bambara groundnut; however, there is an urgent need to continue research to realize its full potential.

2.
Brain Inj ; 34(1): 131-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31526028

RESUMO

PRIMARY OBJECTIVE: This study characterized the acute and chronic effects of tau reduction in traumatic brain injury (TBI). RESEARCH DESIGN: A fluid percussion injury (FPI) or a sham-injury was administered to wild type (WT) or tau knockout (Tau-/-) mice. Mice were assigned to a one-week or twelve-week recovery period before behavioral testing and analysis of brain tissue. METHODS AND PROCEDURES: Mice were tested on the elevated-plus maze, the Y-maze, and rotarod. The twelve-week recovery mice underwent in vivo MRI. Phosphorylated tau in brain tissue was analyzed post-mortem using western blots. MAIN OUTCOMES AND RESULTS: FPI mice, regardless of genotype, had abnormalities on the elevated-plus maze (a task to assess anxiety-like behavior) at one-week post-injury. However, after twelve-weeks recovery, the Tau-/- mice that were given an FPI were less anxious and had improved motor function compared to their WT counterparts. MRI analysis found that while all FPI mice had brain damage, the Tau-/- mice had larger hippocampal volumes. The WT+FPI mice also had increased phosphorylated tau compared to WT+sham mice at both the one-week and twelve-week recovery times. CONCLUSION: These findings suggest that tau may play an important role in some of the consequences of TBI, particularly the long-term functional deficits.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Camundongos , Percussão
3.
Huan Jing Ke Xue ; 39(8): 3789-3796, 2018 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29998688

RESUMO

An efficient aerobic denitrifying bacterium was isolated from the sediments of the Jin Pen Reservoir in Xi'an. The strain was identified by morphological features and 16S rDNA sequences as Pseudomonas stutzeri and named it KK99. The denitrification characteristics of the strain and the expression level of the functional genes narG, nirS, and nosZ in aerobic/anaerobic conditions were investigated. The results showed that the strain can carry out both anaerobic and aerobic denitrification and has a high efficiency of denitrification, which occurs under both aerobic and anaerobic conditions; after 24 h, the removal rates of total nitrogen (TN) were 85.08% and 89.05%, respectively. Under both the conditions, the expression levels of the functional genes nosZ and nirS are high. nosZ plays a vital role in denitrification in the aerobic pathway, nirS plays a vital role in denitrification in the anaerobic pathway, and narG expression is low under both the conditions. At the same time, simultaneous nitrification and denitrification (SND) capacity of the strain was observed when nitrate and ammonium salts were the nitrogen sources, with the total nitrogen removal rate being 76% within 24 h in aerobic conditions. The P. stutzeri KK99 strain can be used for controlling eutrophication of micro-polluted water, and the application of total nitrogen reduction engineering.


Assuntos
Desnitrificação , Genes Bacterianos , Pseudomonas stutzeri/genética , Aerobiose , China , Sedimentos Geológicos/microbiologia , Nitrificação , Nitrogênio , Pseudomonas stutzeri/isolamento & purificação , Microbiologia da Água
4.
J Neurotrauma ; 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29901412

RESUMO

Initial studies have found some evidence for transactive response DNA-binding protein 43 (TDP-43) abnormalities after traumatic brain injury (TBI), and the presence of protein inclusions consisting of TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis (ALS), a condition associated with TBI. However, no study has characterized changes in TDP-43 phosphorylation, mislocalization, and fragmentation (i.e., abnormalities linked to hallmark TDP-43 pathology) after TBI, and how these relate to functional outcomes. Further, how TBI affects an individual with a known predisposition to TDP-43 pathology is unknown. Therefore, this study examined the effects of TBI on TDP-43 post-translational processing, localization, and behavioral outcomes in wild-type (WT) mice and mutant TDP-43A315T mice (i.e., mice predisposed to TDP-43 pathology) at 24 h and 1 week after TBI. Post-mortem brain tissue from human patients with acute TBI was also examined. Western blots found that WT mice given TBI had increased TDP-43 phosphorylation, mislocalization, and fragmentation compared with sham-injured WT mice. The TDP-43A315T mice given a TBI had exacerbated TDP-43 abnormalities, worse cell death, and cognitive deficits compared with all other groups. In the human TBI patients, the only significant finding was increased nuclear accumulation of phosphorylated TDP-43 fragments. The discrepancy between the robust mouse findings and the largely non-significant human findings may be due to factors including heterogeneity in clinical TBI, the small group sizes, and temporal complexities with TDP-43 abnormalities. These findings indicate that TBI can induce a number of TDP-43 abnormalities that may contribute to the neurological consequences of TBI, though further research is still needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...