Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(38): 45455-45464, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722023

RESUMO

The presence of defects such as vacancies has a significant impact on the frictional properties of 2D materials that are excellent solid lubricants. In this study, we demonstrate that the nonmonotonic effect of Te vacancy defects on the friction of MoTe2 is related to the change in the maximum sliding energy barrier due to the variation in tip position. The experimental results of atomic force microscopy suggest that the friction shows an overall increasing trend with the increase in Te vacancy density, but this variation is nonmonotonic. Molecular dynamics simulations show that the increase in friction force with defect density can be attributed to the large and more sliding energy barriers that the tip has to overcome. Furthermore, the nonmonotonic variation of friction with defect density is dominated by the change of the maximum sliding potential barrier caused by the variation of tip position perpendicular to the sliding direction during the sliding process. Additionally, the uneven charge distribution due to charge transfer occurring at the defect also contributes to the increase in friction. This work shows the mechanism of the effect of Te vacancy defects on the friction of MoTe2, which provides guidance for the modulation of the frictional properties of solid lubricants.

2.
Phys Chem Chem Phys ; 23(35): 19819-19826, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525145

RESUMO

The tip-membrane interface plays a critical role in characterizing the mechanical properties of ultrathin 2D materials by commonly employed nanoindentation based on atomic force microscopy (AFM). However, the reliability of the assumption that the tip-membrane interface remains pinned during nanoindentation remains unclear, which may introduce unignorable uncertainty in evaluating their true mechanical properties. In this work, it is reported that load-dependent frictional behavior would occur on the tip-membrane interface during nanoindentation tests on monolayer and multilayer suspended WS2 and graphene, and the curve hysteresis could be well explained by the stick-slip behavior. Further analyses and finite element simulations demonstrated that the frictional energy dissipation should be mainly attributed to the frictional behavior along the direction parallel to the cantilever beam. Meanwhile, the in-plane membrane stiffness was mainly responsible for the different frictional behavior on monolayer and multilayer 2D materials. Based on these analyses, some suggestions were proposed to help reduce the uncertainty when extracting the mechanical properties of 2D materials. These findings not only facilitate the deep understanding of the origin of the curve hysteresis during nanoindentation, but also help to evaluate the mechanical properties of 2D materials in a more reliable way.

4.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918541

RESUMO

Prodigiosin is a red pigment produced by Serratia marcescens with anticancer, antimalarial, and antibacterial effects. In this study, we extracted and identified a red pigment from a culture of S. marcescens strain ZPG19 and investigated its effect on the growth performance and intestinal microbiota of Kunming mice. High-performance liquid chromatography/mass spectrometry revealed that the pigment had a mass-to-charge ratio (m/z) of 324.2160, and thus it was identified as prodigiosin. To investigate the effect of prodigiosin on the intestinal microbiota, mice (n = 5) were administered 150 µg/kg/d prodigiosin (crude extract, 95% purity) via the drinking water for 18 days. Administration of prodigiosin did not cause toxicity in mice. High-throughput sequencing analysis revealed that prodigiosin altered the cecum microbiota abundance and diversity; the relative abundance of Desulfovibrio significantly decreased, whereas Lactobacillus reuteri significantly increased. This finding indicates that oral administration of prodigiosin has a beneficial effect on the intestinal microbiota of mice. As prodigiosin is non-toxic to mouse internal organs and improves the mouse intestinal microbiota, we suggest that it is a promising candidate drug to treat intestinal inflammation.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Prodigiosina/farmacologia , Serratia marcescens/química , Animais , Biodiversidade , Peso Corporal/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Metaboloma , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Filogenia , Prodigiosina/química , Serratia marcescens/metabolismo
5.
Small ; 17(13): e2005996, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33690983

RESUMO

The potential applications of 2D layered materials (2DLMs) as the functional membranes in flexible electronics and nano-electromechanical systems emphasize the role of the mechanical properties of these materials. Interlayer interactions play critical roles in affecting the mechanical properties of 2DLMs, and nevertheless the understanding of their relationship remains incomplete. In the present work, it is reported that the fracture strength of few-layer (FL) WS2 can be weakened by the interlayer friction among individual layers with the assistance of finite element simulations and density functional theory (DFT) calculations. The reduced fracture strength can be also observed in FL WSe2 but with a lesser extent, which is attributed to the difference in the interlayer sliding energies of WS2 and WSe2 as confirmed by DFT calculations. Moreover, the tip-membrane friction can give rise to the underestimation of the Young's modulus except for the membrane nonlinearity. These results give deep insights into the influence of interfacial interactions on the mechanical properties of 2DLMs, and suggest that importance should be also attached to the interlayer interactions during the design of nanodevices with 2DLMs as the functional materials.

6.
RSC Adv ; 9(47): 27464-27474, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35529235

RESUMO

Dynamic force microscopy (DFM) has become a multifunctional and powerful technique for the study of the micro-nanoscale imaging and force detection, especially in the compositional and nanomechanical properties of polymers. The energy dissipation between the tip and sample is a hot topic in current materials science research. The out-of-plane interaction can be measured by the most commonly used tapping mode DFM, which exploits the flexural eigenmodes of the cantilever and a sharp tip vibrating perpendicular to the sample surface. However, the in-plane interaction cannot be detected by the tapping mode. Here a bimodal approach, where the first order flexural and torsional eigenmodes of the cantilever are simultaneously excited, was developed to detect the out-of-plane and in-plane dissipation between the tip and the polymer blend of polystyrene (PS) and low-density polyethylene (LDPE). The vibration amplitudes and phases have been recorded to obtain the contrast, energy dissipation and virial versus the setpoint ratio of the first order vibration amplitude. The pull-in phenomenon caused by a strong attractive force can occur near the transitional setpoint ratio value, the amplitude setpoint at which the mean force changes from overall attractive to overall repulsive. The in-plane dissipation is much lower than out-of-plane dissipation, but the torsional amplitude image contrast is higher when the tip vibrates near the sample surface. The average tip-sample distance can be controlled by the setpoint ratio to study the in-plane dissipation. Both flexural and torsional phase contrasts and torsional amplitude contrast can also be significantly enhanced in the intermediate setpoint ratio range, in which compliant heterogeneous materials can be distinguished. The experiment results are of great importance to optimize the operating parameters of image contrast and reveal the mechanism of friction dissipation from the perspective of in- and out-of-plane energy dissipation at different height levels, which adds valuable ideas for the future applications, such as compliant materials detection, energy dissipation and the lateral micro-friction measurement and so on.

7.
Rev Sci Instrum ; 89(11): 115109, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501321

RESUMO

An atomic force microscopy experimental setup was modified to analyze the differences between the piezoelectric excitation and the photothermal excitation (PTE) for three types of cantilevers, including two aluminum coated cantilevers and one uncoated single-crystalline silicon cantilever. The results show the PTE is a direct and localized excitation method to yield smooth and clean frequency spectra representing only the dynamics of the cantilever without the coupling with mechanical components. The cantilever can be easily excited for a high and controllable amplitude by the PTE method as compared to the piezoelectric excitation. The 1st and 2nd order flexural vibration amplitudes of the coated cantilever are easily and efficiently excited by the PTE method, mainly due to the bimetallic effect and a high photothermal efficiency. The energy conversion and absorption efficiency comparison has been analyzed for different cantilevers by the PTE method. The spurious effects can be avoided by the PTE method which clearly reflects dynamic characteristics of the cantilever, and the scanning image quality can be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...