Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 5(8): 947-50, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25147620

RESUMO

Imidazopyridine 1 was identified from a phenotypic screen against P. falciparum (Pf) blood stages and subsequently optimized for activity on liver-stage schizonts of the rodent parasite P. yoelii (Py) as well as hypnozoites of the simian parasite P. cynomolgi (Pc). We applied these various assays to the cell-based lead optimization of the imidazopyrazines, exemplified by 3 (KAI407), and show that optimized compounds within the series with improved pharmacokinetic properties achieve causal prophylactic activity in vivo and may have the potential to target the dormant stages of P. vivax malaria.

2.
Mol Cancer Ther ; 12(2): 151-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23270925

RESUMO

Dysregulation of the PI3K/mTOR pathway, either through amplifications, deletions, or as a direct result of mutations, has been closely linked to the development and progression of a wide range of cancers. Moreover, this pathway activation is a poor prognostic marker for many tumor types and confers resistance to various cancer therapies. Here, we describe VS-5584, a novel, low-molecular weight compound with equivalent potent activity against mTOR (IC(50) = 37 nmol/L) and all class I phosphoinositide 3-kinase (PI3K) isoforms IC(50): PI3Kα = 16 nmol/L; PI3Kß = 68 nmol/L; PI3Kγ = 25 nmol/L; PI3Kδ = 42 nmol/L, without relevant activity on 400 lipid and protein kinases. VS-5584 shows robust modulation of cellular PI3K/mTOR pathways, inhibiting phosphorylation of substrates downstream of PI3K and mTORC1/2. A large human cancer cell line panel screen (436 lines) revealed broad antiproliferative sensitivity and that cells harboring mutations in PI3KCA are generally more sensitive toward VS-5584 treatment. VS-5584 exhibits favorable pharmacokinetic properties after oral dosing in mice and is well tolerated. VS-5584 induces long-lasting and dose-dependent inhibition of PI3K/mTOR signaling in tumor tissue, leading to tumor growth inhibition in various rapalog-sensitive and -resistant human xenograft models. Furthermore, VS-5584 is synergistic with an EGF receptor inhibitor in a gastric tumor model. The unique selectivity profile and favorable pharmacologic and pharmaceutical properties of VS-5584 and its efficacy in a wide range of human tumor models supports further investigations of VS-5584 in clinical trials.


Assuntos
Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Modelos Animais de Doenças , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Morfolinas/efeitos adversos , Morfolinas/farmacocinética , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Purinas/efeitos adversos , Purinas/farmacocinética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biotechnol J ; 2(11): 1360-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17806102

RESUMO

The NAD(+)-dependent protein deacetylase SIRT1 is linked to cellular survival pathways by virtue of keeping the tumor suppressor gene p53 and members of the forkhead transcription factor family deacetylated. To validate SIRT1 as a therapeutic anti-cancer target, we performed immunohistochemistry experiments to study the in vivo expression of SIRT1 in cancer specimens. We show that human SIRT1 is highly expressed in cancer cell lines as well as in tissue samples from colon carcinoma patients. Interestingly, there is a strong cytosolic component in the SIRT1 expression pattern. We further characterized SIRT1 in p53-wild-type and -mutant cell lines and show that SIRT1 mRNA-knockdown leads to a p53-independent decrease of cell proliferation and induction of apoptosis. In addition, SIRT1 expression has been found to be inducible upon DNA damage. A previously discovered small molecule SIRT1 inhibitor with nanomolar in vitro activity has been tested in cancer relevant assays. The SIRT1 inhibitory compound showed no potent anti-proliferative activity despite hitting its molecular target within tumor cells. From these studies we conclude that it may not be sufficient to block the catalytic function of SIRT1, and that its survival effects may be mainly brought about by means other then the deacetylase function. The increased cytosolic expression of SIRT1 in cancer cells could be an indicator of such novel functions.


Assuntos
Neoplasias/metabolismo , Sirtuínas/metabolismo , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citosol/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Mutação , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1 , Sirtuínas/genética , Análise Serial de Tecidos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Biomol Screen ; 11(8): 959-67, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17099246

RESUMO

The nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase SIRT1 has been linked to fatty acid metabolism via suppression of peroxysome proliferator-activated receptor gamma (PPAR-gamma) and to inflammatory processes by deacetylating the transcription factor NF-kappaB. First, modulation of SIRT1 activity affects lipid accumulation in adipocytes, which has an impact on the etiology of a variety of human metabolic diseases such as obesity and insulin-resistant diabetes. Second, activation of SIRT1 suppresses inflammation via regulation of cytokine expression. Using high-throughput screening, the authors identified compounds with SIRT1 activating and inhibiting potential. The biological activity of these SIRT1-modulating compounds was confirmed in cell-based assays using mouse adipocytes, as well as human THP-1 monocytes. SIRT1 activators were found to be potent lipolytic agents, reducing the overall lipid content of fully differentiated NIH L1 adipocytes. In addition, the same compounds have anti-inflammatory properties, as became evident by the reduction of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). In contrast, a SIRT1 inhibitory compound showed a stimulatory activity on the differentiation of adipocytes, a feature often linked to insulin sensitization.


Assuntos
Anti-Inflamatórios/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Quinoxalinas/química , Sirtuínas/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Insulina , Lipogênese/efeitos dos fármacos , Camundongos , Estrutura Molecular , Sirtuína 1 , Sirtuínas/agonistas , Sirtuínas/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...