Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e81849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312593

RESUMO

Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.


Assuntos
Temperatura Baixa/efeitos adversos , Regulação para Baixo/genética , Oryza/genética , Oryza/fisiologia , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Plântula/fisiologia , Perfilação da Expressão Gênica , Genômica , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos
2.
PLoS One ; 5(1): e8632, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20072620

RESUMO

Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS). In this study, methyl viologen (MV) as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica) seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica). Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs). These CIPs were analyzed by gene ontology (GO) and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs), P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS). Further insertion/deletion (InDel) and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.


Assuntos
Perfilação da Expressão Gênica , Oryza/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Genes de Plantas , Oryza/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...