Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(73): 10202-10205, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000425

RESUMO

Despite numerous prior reports of molten salt etching of MAX phases, few of these reports achieved water-dispersible MXene nanosheets, and none for Nb-based MXenes. Here we demonstrate the synthesis and aqueous dispersibility of Nb2CTZ nanosheets via molten salt etching and utilizing a KOH wash to add hydroxyl surface groups. However, little is known about the oxidation of molten salt etched MXenes compared to acid-etched MXenes. Our results indicate slower oxidation behavior for MXenes etched by molten salts, which may be due to the decreased amount of oxygen-containing terminal groups.

2.
ACS Appl Mater Interfaces ; 13(43): 51556-51566, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672540

RESUMO

MXene/polymer composites have gained widespread attention due to their high electrical conductivity and extensive applications, including electromagnetic interference (EMI) shielding, energy storage, and catalysis. However, due to the difficulty of dispersing MXenes in common polymers, the fabrication of MXene/polymer composites with high electrical conductivity and satisfactory EMI shielding properties is challenging, especially at low MXene loadings. Here, we report the fabrication of MXene-armored polymer particles using dispersion polymerization in Pickering emulsions and demonstrate that these composite powders can be used as feedstocks for MXene/polymer composite films with excellent EMI shielding performance. Ti3C2Tz nanosheets are used as the representative MXene, and three different monomers are used to prepare the armored particles. The presence of nanosheets on the particle surface was confirmed by X-ray photoelectron spectroscopy and scanning electron microscopy. Hot pressing the armored particles above Tg of the polymer produced Ti3C2Tz/polymer composite films; the films are electrically conductive because of the network of nanosheets templated by the particle feedstocks. For example, the particle-templated Ti3C2Tz/polystyrene film had an electrical conductivity of 0.011 S/cm with 1.2 wt % of Ti3C2Tz, which resulted in a high radio frequency heating rate of 13-15 °C/s in the range of 135-150 MHz and an EMI shielding effectiveness of ∼21 dB within the X band. This work provides a new approach to fabricate MXene/polymer composite films with a templated electrical network at low MXene loadings.

3.
ACS Appl Mater Interfaces ; 11(51): 47929-47938, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31774650

RESUMO

The growing demand for compact energy storage devices may be met through the use of thin-film microbatteries, which generally rely on charge storage in thin or conformal layers. A promising technique for creating thin-film electrodes is layer-by-layer (LbL) assembly, based on the alternating adsorption of oppositely charged species to a surface to form a nanostructured electrode. Thin-film energy storage devices must have a high energy density within a limited space, so new electrode structures, materials, and assembly methods are important. To this end, both two-dimensional MXenes and polyaniline nanofibers (PNFs) have shown promising energy storage properties. Here, we report on the LbL assembly of positively charged PNFs and negatively charged Ti3C2Tx MXenes into hybrid electrodes for thin-film energy storage devices. The successful assembly is demonstrated in which MXenes and PNFs are deposited in films of 49 nm/layer pair thickness. The resulting composition was 77 wt % PNFs and 23 wt % MXenes. The charge storage process was deconvoluted into faradaic/non-faradaic contributions and separated into contributions from PNFs and MXenes. A sandwich cell showed a maximum areal capacity, energy, and power of 17.6 µA h cm-2, 22.1 µW h cm-2, and 1.5 mW cm-2, respectively, for PNF/MXene multilayers of about 2 µm thickness. This work suggests the possibility of using LbL PNF/MXene thin films as electrode materials for thin-film energy storage devices used in next-generation small electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...