Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Mol Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726778

RESUMO

BACKGROUND: Gastric Cancer (GC) has become one of the most important causes of cancer-related deaths worldwide due to its intractability. Studying the mechanisms of gastric carcinogenesis, recurrence, and metastasis, and searching for new therapeutic targets have become the main directions of today's gastric cancer research. Lactate is considered a metabolic by-product of tumor aerobic glycolysis, which can regulate tumor development through various mechanisms, including cell cycle regulation, immunosuppression, and energy metabolism. However, the effects of genes related to lactate metabolism on the prognosis and tumor microenvironmental characteristics of GC patients are unknown.

Method: In this study, we have collected gene expression data of gastric cancer from The Cancer Genome Atlas (TCGA) and identified differentially expressed genes in gastric cancer using the "Limma" software package.

Result: 76 differentially expressed lactate metabolism-related genes were screened, and then the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analysis were employed that identified 8 genes, constructed Lactate Metabolism-related gene signals (LMRs), and verified the reliability of the prognostic risk mapping by using TCGA training set and TCGA internal test set. Finally, the functional enrichment analysis was employed to identify the molecular mechanism.

Conclusion: Eight lactate metabolism-related genes were constructed into a new predictive signal that better predicted the overall survival of gastric cancer patients and can guide clinical decisions for more precise and personalized treatment.

2.
Plants (Basel) ; 12(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960120

RESUMO

The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.

3.
Nat Commun ; 14(1): 6486, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838719

RESUMO

Modulation of magnetic properties through voltage-driven ion motion and redox processes, i.e., magneto-ionics, is a unique approach to control magnetism with electric field for low-power memory and spintronic applications. So far, magneto-ionics has been achieved through direct electrical connections to the actuated material. Here we evidence that an alternative way to reach such control exists in a wireless manner. Induced polarization in the conducting material immersed in the electrolyte, without direct wire contact, promotes wireless bipolar electrochemistry, an alternative pathway to achieve voltage-driven control of magnetism based on the same electrochemical processes involved in direct-contact magneto-ionics. A significant tunability of magnetization is accomplished for cobalt nitride thin films, including transitions between paramagnetic and ferromagnetic states. Such effects can be either volatile or non-volatile depending on the electrochemical cell configuration. These results represent a fundamental breakthrough that may inspire future device designs for applications in bioelectronics, catalysis, neuromorphic computing, or wireless communications.

4.
Int Immunopharmacol ; 118: 110131, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023700

RESUMO

Panaxadiol saponin (PND) is a latent targeted drug for the treatment of aplastic anemia (AA). In this study, we examined the effects of PND on ferroptosis in iron-overload AA and Meg-01 cells. We utilized RNA-seq to analyze differentially expressed genes in iron-induced Meg-01 cells treated with PND. The effects of PND or combined with deferasirox (DFS) on iron deposition, labile iron pool (LIP), several ferroptosis events, apoptosis, mitochondrial structure, as well as ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR pathway-related markers in iron-induced Meg-01 cells were examined by Prussian-blue staining, flow cytometer, ELISA, Hoechst 33342 staining, transmission electron microscope, and Western blot assays, respectively. Additionally, an AA mice model with iron overload was established. Then, the blood routine was assessed, and the number of bone marrow-derived mononuclear cells (BMMNCs) in mice was counted. Also, serum iron, ferroptosis events, apoptosis, histology, T lymphocyte percentage, ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related targets in primary megakaryocytes of AA mice with iron overload were assessed by commercial kits, TUNEL staining, hematoxylin and eosin (H&E) staining, Prussian blue staining, flow cytometer, and qRT-PCR analysis, respectively. PND suppressed iron-triggered iron overload, and apoptosis, and ameliorated mitochondrial morphology in Meg-01 cells. Importantly, PND ameliorated ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related marker expressions in iron-induced Meg-01 cells or primary megakaryocytes of AA mice with iron overload. Moreover, PND ameliorated body weight, peripheral blood cell counts, the number of BMMNCs, and histological injury in the iron-overload AA mice. Also, PND improved the percentage of T lymphocytes in the iron-overload AA mice. PND attenuates ferroptosis against iron-overload AA mice and Meg-01 cells via activating Nrf2/HO-1 and PI3K/AKT/mTOR pathway and is a promising novel therapeutic candidate for AA.


Assuntos
Anemia Aplástica , Ferroptose , Sobrecarga de Ferro , Saponinas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Anemia Aplástica/tratamento farmacológico , Transdução de Sinais , Sobrecarga de Ferro/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Ferro
5.
ACS Nano ; 17(7): 6973-6984, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972329

RESUMO

Magneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte) that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i.e., Co3O4) and the liquid electrolyte increases magneto-ionic cyclability from <30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveals the crucial role of the generated TaOx interlayer as a solid electrolyte (i.e., ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.

6.
Mater Horiz ; 10(1): 88-96, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36305823

RESUMO

Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (i.e., post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (i.e., stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.


Assuntos
Encéfalo , Elementos de Transição , Fenômenos Físicos , Aprendizagem , Eletricidade , Frequência Cardíaca
7.
ACS Appl Mater Interfaces ; 14(39): 44581-44590, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129787

RESUMO

Magneto-ionics is an emerging actuation mechanism to control the magnetic properties of materials via voltage-driven ion motion. This effect largely relies on the strength and penetration of the induced electric field into the target material, the amount of generated ion transport pathways, and the ionic mobility inside the magnetic media. Optimizing all these factors in a simple way is a huge challenge, although highly desirable for technological applications. Here, we demonstrate that the introduction of suitable transition-metal elements to binary nitride compounds can drastically boost magneto-ionics. More specifically, we show that the attained magneto-ionic effects in CoN films (i.e., saturation magnetization, toggling speeds, and cyclability) can be drastically enhanced through 10% substitution of Co by Mn in the thin-film composition. Incorporation of Mn leads to transformation from nanocrystalline into amorphous-like structures, as well as from metallic to semiconducting behaviors, resulting in an increase of N-ion transport channels. Ab initio calculations reveal a lower energy barrier for CoMn-N compared to Co-N that provides a fundamental understanding of the crucial role of Mn addition in the voltage-driven magnetic effects. These results constitute an important step forward toward enhanced voltage control of magnetism via electric field-driven ion motion.

8.
Nat Commun ; 13(1): 1707, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361828

RESUMO

Nowadays the development of machine vision is oriented toward real-time applications such as autonomous driving. This demands a hardware solution with low latency, high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, is capable of simultaneously capturing and processing images. In each FE-PS, self-powered photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 layer, show not only multiple nonvolatile levels but also sign reversibility, enabling the representation of a signed weight in a single device and hence reducing the hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-NET acts on its own as an artificial neural network. In situ multiply-accumulate operation between an input image and a stored photoresponsivity matrix is demonstrated in the FE-PS-NET. Moreover, the FE-PS-NET is faultlessly competent for real-time image processing functionalities, including binary classification between 'X' and 'T' patterns with 100% accuracy and edge detection for an arrow sign with an F-Measure of 1 (under 365 nm ultraviolet light). This study highlights the great potential of ferroelectric photovoltaics as the hardware basis of real-time machine vision.

9.
ACS Appl Mater Interfaces ; 14(15): 17987-17994, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380776

RESUMO

While using ferroelectric polarization to tune the functional properties of 2D materials has been extensively studied recently, the effects of 2D materials on the ferroelectricity and piezoelectricity of ferroelectrics are much less explored. In this work, we report markedly enhanced ferroelectric and piezoelectric properties of graphene/Pb(Zr0.52Ti0.48)O3/SrRuO3 (GR/PZT/SRO) capacitors. Compared with conventional metal-electroded ferroelectric capacitors, the GR/PZT/SRO capacitors exhibit more abrupt polarization switching, larger switchable polarization, lower leakage current, and smaller coercive voltage. Moreover, with graphene electrodes, the ferroelectric properties of PZT capacitors are much more stable against aging. The enhanced ferroelectric behaviors in GR/PZT/SRO capacitors can be attributed to an improved interface with fewer defects and inhibited growth of defective interfacial layer resulting from the graphene protection. Because of the atomic thickness and extraordinary mechanical flexibility of graphene, the piezoelectric response in PZT with graphene electrode is about four times larger than the one with an Au electrode. Our findings on the enhanced ferroelectric and piezoelectric properties of PZT with 2D electrodes advance the understanding of the 2D/PZT interface and provide solutions for developing high-performance ferroelectrics devices.

10.
Nanoscale ; 14(3): 842-852, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34985078

RESUMO

Voltage control of magnetism via electric-field-driven ion migration (magneto-ionics) has generated intense interest due to its potential to greatly reduce heat dissipation in a wide range of information technology devices, such as magnetic memories, spintronic systems or artificial neural networks. Among other effects, oxygen ion migration in transition-metal-oxide thin films can lead to the generation or full suppression of controlled amounts of ferromagnetism ('ON-OFF' magnetic transitions) in a non-volatile and fully reversible manner. However, oxygen magneto-ionic rates at room temperature are generally considered too slow for industrial applications. Here, we demonstrate that sub-second ON-OFF transitions in electrolyte-gated paramagnetic cobalt oxide films can be achieved by drastically reducing the film thickness from >200 nm down to 5 nm. Remarkably, cumulative magneto-ionic effects can be generated by applying voltage pulses at frequencies as high as 100 Hz. Neuromorphic-like dynamic effects occur at these frequencies, including potentiation (cumulative magnetization increase), depression (i.e., partial recovery of magnetization with time), threshold activation, and spike time-dependent magnetic plasticity (learning and forgetting capabilities), mimicking many of the biological synapse functions. The systems under investigation show features that could be useful for the design of artificial neural networks whose magnetic properties would be governed with voltage.

11.
Adv Mater ; 31(49): e1903679, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639262

RESUMO

Resistive switching (RS) memory has stayed at the forefront of next-generation nonvolatile memory technologies. Recently, a novel class of transition metal oxides (TMOs), which exhibit reversible topotactic phase transformation between insulating brownmillerite (BM) phase and conducting perovskite (PV) phase, has emerged as promising candidate materials for RS memories. Nevertheless, the microscopic mechanism of RS in these TMOs is still unclear. Furthermore, RS devices with simultaneously high density and superior memory performance are yet to be reported. Here, using SrFeOx as a model system, it is directly observed that PV SrFeO3 nanofilaments are formed and extend almost through the BM SrFeO2.5 matrix in the ON state and are ruptured in the OFF state, unambiguously revealing a filamentary RS mechanism. The nanofilaments are ≈10 nm in diameter, enabling to downscale Au/SrFeOx /SrRuO3 RS devices to the 100 nm range for the first time. These nanodevices exhibit good performance including ON/OFF ratio as high as ≈104 , retention time over 105 s, and endurance up to 107 cycles. This study significantly advances the understanding of the RS mechanism in TMOs exhibiting topotactic phase transformation, and it also demonstrates the potential of these materials for use in high-density RS memories.

12.
ACS Appl Mater Interfaces ; 11(30): 27088-27097, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31282642

RESUMO

With rapid advances in flexible electronics and communication devices, flexible dielectric capacitors exhibiting high permittivity, low loss, and large electric-field tunability over a wide frequency range have attracted increasing attention. Here, a large-scale Ba0.67Sr0.33TiO3 (BST) dielectric thin film sandwiched between SrRuO3 (SRO) bottom electrode and Pt top electrode is fabricated on a flexible mica substrate. The mica/SRO/BST/Pt capacitor exhibits a dielectric constant (εr') of more than 1200, a loss tangent [tan(δ)] as low as 0.16, and a tunability of 67% at low frequencies around 10 kHz. Simultaneously, the capacitor can retain an εr' of 540 and a tan(δ) of 0.07 at microwave frequencies, e.g., 18.6 GHz. Moreover, even when the capacitor is bent to a small radius of 5 mm or undergoes 12 000 bending cycles (at 5 mm radius), almost no deterioration in εr', tan(δ), and tunability is observed. The excellent dielectricity and mechanical flexibility and durability endow the mica/SRO/BST/Pt capacitor with huge potential for flexible electronic and microwave applications.

13.
Zhongguo Zhong Yao Za Zhi ; 44(5): 899-904, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989847

RESUMO

Flower medicinal materials usually refer to Chinese medicinal materials with a complete flower,inflorescence,or part of a flower as the different medicinal parts,they have an important share in the Chinese herbal medicine market and appeared frequently in Chinese medicine prescriptions. Firstly,the species and regional distribution of the flower medicinal materials resources in China were briefly summarized. Secondly,the characteristics,yield,producing area and origin distribution of the main flower medicinal materials in Henan province were discussed. Finally,the present situation and the main problems of the flower medicinal materials industry in Henan province were comprehensively analyzed,and the corresponding industrial development countermeasures were put forward.This research was intended to provide decision-making demonstration and scientific basis for the rational exploitation and utilization of resources,breeding of new varieties,planting division,production layout and the healthy and sustainable development of the flower medicinal materials industry in Henan province.


Assuntos
Medicamentos de Ervas Chinesas , Flores/química , Plantas Medicinais/crescimento & desenvolvimento , China , Conservação dos Recursos Naturais , Indústrias , Pesquisa
14.
New Phytol ; 218(3): 1076-1088, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528490

RESUMO

Triterpene synthases, also known as 2,3-oxidosqualene cyclases (OSCs), synthesize diverse triterpene skeletons that form the basis of an array of functionally divergent steroids and triterpenoids. Tetracyclic and pentacyclic triterpene skeletons are synthesized via protosteryl and dammarenyl cations, respectively. The mechanism of conversion between two scaffolds is not well understood. Here, we report a promiscuous OSC from rice (Oryza sativa) (OsOS) that synthesizes a novel pentacyclic triterpene orysatinol as its main product. The OsOS gene is widely distributed in indica subspecies of cultivated rice and in wild rice accessions. Previously, we have characterized a different OSC, OsPS, a tetracyclic parkeol synthase found in japonica subspecies. Phylogenetic and protein structural analyses identified three key amino acid residues (#732, #365, #124) amongst 46 polymorphic sites that determine functional conversion between OsPS and OsOS, specifically, the chair-semi(chair)-chair and chair-boat-chair interconversions. The different orientation of a fourth amino acid residue Y257 was shown to be important for functional conversion The discovery of orysatinol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into tetra- and pentacyclic skeletons, and provide a new strategy to identify key residues determining OSC specificity.


Assuntos
Aminoácidos/metabolismo , Transferases Intramoleculares/química , Oryza/enzimologia , Sequência de Aminoácidos , Ciclização , Variação Genética , Transferases Intramoleculares/genética , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/metabolismo , Oryza/genética , Filogenia , Especificidade por Substrato
15.
J Integr Plant Biol ; 56(8): 749-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24571491

RESUMO

Seed vigor is an index of seed quality that is used to describe the rapid and uniform germination and the establishment of strong seedlings in any environmental conditions. Strong seed vigor in low-temperature germination conditions is particularly important in direct-sowing rice production systems. However, seed vigor has not been selected as an important breeding trait in traditional breeding programs due to its quantitative inherence. In this study, we identified and mapped eight quantitative trait loci (QTLs) for seed vigor by using a recombinant inbred population from a cross between rice (Oryza sativa L. ssp. indica) cultivars ZS97 and MH63. Conditional QTL analysis identified qSV-1, qSV-5b, qSV-6a, qSV-6b, and qSV-11 influenced seedling establishment and that qSV-5a, qSV-5c, and qSV-8 influenced only germination. Of these, qSV-1, qSV-5b, qSV-6a, qSV-6b, and qSV-8 were low-temperature-specific QTLs. Two major-effective QTLs, qSV-1, and qSV-5c were narrowed down to 1.13-Mbp and 400-kbp genomic regions, respectively. The results provide tightly linked DNA markers for the marker-assistant pyramiding of multiple positive alleles for increased seed vigor in both normal and low-temperature germination environments.


Assuntos
Germinação/genética , Oryza/genética , Locos de Características Quantitativas , Plântula/fisiologia , Sementes/fisiologia , Mapeamento Cromossômico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...