Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 265: 124815, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348355

RESUMO

Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.


Assuntos
Neoplasias , Dióxido de Enxofre , Animais , Camundongos , Trifosfato de Adenosina , Corantes Fluorescentes/química , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem
2.
Anal Chem ; 94(41): 14257-14264, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36210524

RESUMO

Cancer is one of the biggest public enemies of global health with its high morbidity and mortality. Achieving early diagnosis is the most effective means of reducing cancer harm, which requires the use of powerful tools to accurately identify biomarkers. However, most of the reported fluorescent probes for cancer diagnosis can only detect one substance, which makes it difficult to meet the requirements of high accuracy. Here, a fluorescent nanoprobe (CPQ@ZIF-90) for sequential detection of ATP and ONOO- is constructed by encapsulating the ONOO- sensitive unit CPQ within ZIF-90. CPQ@ZIF-90 first reacts with ATP to release CPQ, which greatly enhances the fluorescence at 740 nm. Then, the released CPQ continues to react with ONOO- and is oxidatively cleaved by ONOO- to form a coumarin product with a small π-conjugated structure, which significantly enhances the fluorescence at 510 nm. CPQ@ZIF-90 shows high sensitivity and selectivity for the detection of ATP and then ONOO-. Moreover, CPQ@ZIF-90 has good biocompatibility and successfully realizes the sequential detection of a dual-channel fluorescence change of ATP and ONOO- in living cells and zebrafish and accurately distinguishes normal cells from cancer cells. CPQ@ZIF-90 is expected to be a potential tool for accurate cancer diagnosis through sequential detection of two cancer markers.


Assuntos
Neoplasias , Ácido Peroxinitroso , Trifosfato de Adenosina , Animais , Biomarcadores , Cumarínicos , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Ácido Peroxinitroso/química , Peixe-Zebra
3.
Anal Chim Acta ; 1226: 340192, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068051

RESUMO

Viscosity is an essential microenvironmental parameter, which is related to various diseases such as acute inflammation. So it is necessary to develop a probe to monitor viscosity changes during the inflammatory progression in vivo. Herein, a HPQ (2-(2'-hydroxyphenyl)-4(3H)-quinazolinone)-based fluorescent probe named HPQ-BI-V is prepared for detecting viscosity in biological systems. The introduction of benzindole groups extends the π conjugation of HPQ, resulting in far-red emission wavelength at 610 nm. When the viscosity raises from 3.11 cP to 567.1 cP, the fluorescence signal increases 711 times, indicating the high sensitivity of the probe. Furthermore, this probe displays excellent selectivity for viscosity in comparison with other interfering analytes. Furthermore, the probe has excellent photostability and outstanding response capability in the physiological pH range. Given these advantages, HPQ-BI-V can be applied for detecting viscosity changes in HepG2 cells and zebrafish. In particular, the probe can successfully visualize viscosity changes in acute inflammatory mice induced by LPS and the assessment of anti-inflammatory drug.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Modelos Animais de Doenças , Células HeLa , Humanos , Inflamação/induzido quimicamente , Camundongos , Mitocôndrias , Viscosidade
4.
J Mater Chem B ; 10(22): 4285-4292, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584392

RESUMO

Autophagy plays a vital role in maintaining intracellular homeostasis through a lysosome-dependent intracellular degradation pathway, which is closely related to the polarity and ATP. Herein, the first example of the dual-response fluorescent probe Lyso-NRB was reported for visualizing the fluctuation of polarity and ATP in lysosomes during autophagy. Probe Lyso-NRB is non-fluorescent. After the decrease of polarity, Lyso-NRB exhibits significant green emission due to the unique intramolecular charge transfer (ICT) effect. Upon the addition of ATP, the probe can react with ATP to rapidly open the spirocycle of rhodamine and a strong red emission can be observed. Moreover, Lyso-NRB exhibits a high sensitivity and selectivity toward polarity and ATP. Most importantly, the probe possesses a good lysosome-targeting ability and is used for the real-time monitoring of lysosome polarity and ATP fluctuations during H2O2 or starvation induced autophagy in living cells. Interestingly, it is found that that ATP deficiency can induce autophagy to increase lysosome polarity. Furthermore, the probe is applied for imaging the change of polarity and ATP under oxidative stress induced autophagy in zebrafish. Therefore, this work holds great potential for tracking the autophagy procedure by detecting the changes of lysosome polarity and ATP, which makes it a potentially powerful tool for understanding the roles of autophagy in diverse biological processes.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Trifosfato de Adenosina , Animais , Autofagia , Concentração de Íons de Hidrogênio , Peixe-Zebra
5.
Analyst ; 147(12): 2712-2717, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35635158

RESUMO

As a common gaseous signaling molecule, hydrogen sulfide (H2S) plays a vital role in physiology and pathology. The development of fluorescent probes for detecting H2S has attracted widespread attention. However, most of the reported fluorescent probes with nitrobenzoxadiazole (NBD) as the recognition group have been widely used to simultaneously detect biothiols and H2S, instead of specifically detecting H2S. Herein, a novel NBD-based near-infrared (NIR) fluorescent probe named CX-N for the detection of H2S is synthesized. The selectivity of CX-N for H2S is significantly higher than that for biothiols and other potential interferences. After reacting with H2S, CX-N shows a significant increase in NIR fluorescence (75-fold), large Stokes shift (155 nm) and fast response (4 min). And the possible response mechanism of CX-N to H2S is given and confirmed by HPLC and HRMS. Based on the low cytotoxicity of CX-N, it has been used for H2S imaging in live cells and zebrafish. More importantly, CX-N has also been successfully applied for the real-time imaging of H2S in inflammatory and tumor mice based on its NIR emission, which provides a reliable platform for the specific recognition of H2S in complex biological systems.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Sulfeto de Hidrogênio/toxicidade , Camundongos , Neoplasias/diagnóstico por imagem , Imagem Óptica , Peixe-Zebra
6.
Anal Chem ; 94(14): 5514-5520, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35360906

RESUMO

Hydrogen sulfide (H2S) is an important endogenous gas signal molecule in living system, which participates in a variety of physiological processes. Very recent evidence has accumulated to show that endogenous H2S is closely associated with various cancers and can be regarded as a biomarker of cancer. Herein, we have constructed a new near-infrared fluorescent probe (DCP-H2S) based on isophorone-xanthene dye for sensing hydrogen sulfide (H2S). The probe shows remarkable NIR turn-on signal at 770 nm with a large Stokes shift of 200 nm, together with high sensitivity (15-fold) and rapid detection ability for H2S (4 min). The probe also possesses excellent selectivity for H2S over various other analytes including biothiols containing sulfhydryl (-SH). Moreover, DCP-H2S has been successfully applied to visualize endogenous and exogenous H2S in living cells (293T, Caco-2 and CT-26 cells). In particular, the excellent ability of DCP-H2S to distinguish normal mice and tumor mice is shown, and it is expected to be a powerful tool for detection of H2S in cancer diagnosis.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Células CACO-2 , Células HeLa , Humanos , Camundongos , Imagem Óptica
7.
Talanta ; 243: 123398, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325748

RESUMO

Carbon monoxide (CO), as one of significant gas transmitter, is closely associated with a variety of physiological and pathological processes. Although plenty of fluorescent probes have been prepared for detecting CO, most of them suffer from water-soluble fluorophores and short emission wavelength, which tends to diffuse and is limited to apply in vivo. Herein, a novel water-soluble fluorescent probe (HPQ-MQ-CO) is prepared to detect CO by releasing a precipitating fluorochrome (HPQ-MQ-OH), which is developed by introducing the 1-ethyl-2-methylquinoline group into HPQ to obtain long emission wavelength and good diffusion resistant ability. Allyl formate, as the identification unit of CO, has good water solubility and quenches the fluorescence of HPQ-MQ-CO. When the probe reacts with CO and Pd2+, an long-emission and solid-state fluorescence signal at 650 nm can be observed, which is based on excited-state intramolecular proton transfer (ESIPT) mechanism. When the concentration of CO is raised to 100.0 µM, the fluorescence is increased 29 times, indicating the sensitivity of the probe. Moreover, this probe shows prominent selectivity for CO compared with other interfering species. Given these advantages, HPQ-MQ-CO can be used for CO detection in HepG2 cells and zebrafish by in-situ and long-term fluorescence imaging. In addition, this probe can monitor the up-regulation of CO in HepG2 cells and zebrafish during drug-induced liver injury (DILI).


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Corantes Fluorescentes , Animais , Monóxido de Carbono , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Corantes Fluorescentes/toxicidade , Imagem Óptica/métodos , Peixe-Zebra
8.
Nanoscale ; 14(10): 3808-3817, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35191447

RESUMO

Cancer is a major public health problem worldwide, and traditional chemotherapy or a single therapeutic strategy often fails to achieve expected results in cancer treatment. Thus, the development of a method to realize controlled drug delivery and synergistic therapy is required. Herein, MOF-based nanoparticles named RhI-DOX-GOD@ZIF-90 are synthesized using RhI (a near-infrared fluorescent dye), DOX (an anti-cancer drug) and GOD (glucose oxidase). RhI and DOX are encapsulated inside the ZIF-90 framework and GOD is loaded on the surface of ZIF-90. Owing to the fact that the ATP level in cancer cells is abnormally higher than that in normal cells, RhI-DOX-GOD@ZIF-90 nanoparticles are destructed only in cancer cells. RhI is released to give outstanding NIR emission and realize controlled drug delivery. DOX is released and cancer cells are killed by chemotherapy. Also, GOD is released to consume glucose and achieve the purpose of starving the cancer cells. By making full use of the advantages of near-infrared emission, RhI-DOX-GOD@ZIF-90 nanoparticles can be used to image ATP in tumor-bearing mice. At the same time, DOX and GOD can be released accurately at tumor sites of mice and excellent anti-tumor efficiency by synergistic chemotherapy and starvation therapy is achieved.


Assuntos
Doxorrubicina , Nanopartículas , Trifosfato de Adenosina , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Corantes Fluorescentes/farmacologia , Nanopartículas/uso terapêutico
9.
Chem Commun (Camb) ; 57(100): 13768-13771, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34859797

RESUMO

A novel theranostic probe called CX-B-DF is constructed for precise chemotherapy guided by near-infrared (NIR) fluorescence imaging. Moreover, the theranostic probe shows high cytotoxicity to cancer cells under dual activation (H2O2 and TP), which causes the accuracy of drug release to be improved and the toxic side effects to be reduced.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , Cumarínicos/uso terapêutico , Floxuridina/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Ácidos Borônicos/metabolismo , Linhagem Celular Tumoral , Cumarínicos/metabolismo , Floxuridina/metabolismo , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Imagem Óptica , Medicina de Precisão , Timidina Fosforilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...