Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Biophys Mol Biol ; 141: 60-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055187

RESUMO

In this work, agro-wastes coming from soursop (peel, seeds and pulp fiber) and sugarcane (bagasse) are used as low-cost biosorbents to remove methylene blue (MB) from aqueous media. Batch experiments are performed under different experimental conditions investigating the effects of biosorbent amount, dye concentration and stirring rate. The best results were found using soursop wastes for a MB concentration of 100 mg L-1, using 0.75 g of residue and a stirring rate of 110 rpm, removing a percentage above 90%. Theoretically, adsorption kinetic can be successfully described by the pseudo-second order model. Redlich-Peterson and Sips models are adopted to interpret the equilibrium adsorption of MB on sugarcane bagasse and soursop residue, respectively. Interestingly, the monolayer model with single energy derived by statistical physics theory is also applied for a deeper explanation of the adsorption mechanism of MB on both the adsorbents. The application of this model allows defining the adsorption geometry of the investigated adsorbate and provides important information about the interactions between the adsorbate and sorbents. In particular, the modelling analysis by statistical physics allows defining that the dye molecules are adsorbed in vertical position and the adsorption process is multi-molecular (i.e. n > 1). Finally, the estimation of adsorption energy suggested that MB adsorption on biosorbent is a physisorption process.


Assuntos
Agricultura , Celulose/química , Poluentes Ambientais/química , Resíduos Industriais , Azul de Metileno/química , Modelos Químicos , Adsorção , Poluentes Ambientais/isolamento & purificação , Cinética , Azul de Metileno/isolamento & purificação , Saccharum/química
2.
Waste Manag ; 45: 289-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26022338

RESUMO

Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable.


Assuntos
Dióxido de Carbono/química , Telefone Celular , Cobre/química , Resíduo Eletrônico/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Peróxido de Hidrogênio/análise , Ácidos Sulfúricos/análise
3.
Waste Manag ; 45: 334-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25922168

RESUMO

Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4.


Assuntos
Telefone Celular , Resíduo Eletrônico/análise , Índio/química , Cristais Líquidos/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Vidro/química , Polímeros/química , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...