Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 55(4): 1446-52, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26841126

RESUMO

Tungsten imido complexes bearing a redox-active ligand, such as N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene (L1), N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene (L2), and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (L3), were prepared by salt-free reduction of W(═NC6H3-2,6-(i)Pr2)Cl4 (1) using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) followed by addition of the corresponding redox-active ligands. In the initial stage, reaction of W(═NC6H3-2,6-(i)Pr2)Cl4 with MBTCD afforded a tetranuclear W(V) imido cluster, [W(═NC6H3-2,6-(i)Pr2)Cl3]4 (2), which served as a unique precursor for introducing redox-active ligands to the tungsten center to give the corresponding mononuclear complexes with a general formula of W(═NC6H3-2,6-(i)Pr2)Cl3(L) (3, L = L1; 4, L = L2; and 6, L = L3). X-ray analyses of complexes 3 and 6 revealed a neutral coordination mode of L1 and L3 to the tungsten in solid state, while the electron paramagnetic resonance (EPR) spectra of 3 and 4 clarified that a radical was predominantly located on the tungsten center supported by neutral L1 or L2, and the EPR spectra of complex 6 indicated that a radical was delocalized over both the tungsten center and the monoanionic redox-active ligand L3.

2.
J Am Chem Soc ; 136(13): 5161-70, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24597916

RESUMO

Electron-rich organosilicon compounds, such as 1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2a), 2,5-dimethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2b), 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (2c), and 1,1'-bis(trimethylsilyl)-1,1'-dihydro-4,4'-bipyridine (4), served as versatile reducing reagents of group 4-6 metal chloride complexes, such as Cp2TiCl2, Cp*2TiCl2 (Cp* = η(5)-C5Me5), Cp*TiCl3, Cp*TaCl4, and WCl4(PMe2Ph)2, to generate the corresponding low-valent metal species in a salt-free manner. Nitrogen-containing reductants, such as 2a-c and 4, had stronger reducing ability than the parent organosilicon reductants, 3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1a) and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1b), as well as a pyridine-derived reductant, 1,4-bis(trimethylsilyl)-1-aza-2,5-cyclohexadiene (3). These greater effects of 2a-c and 4 are likely due to their negative one-electron redox potentials, as typically demonstrated in the reduction of Cp2TiCl2, for which compounds 2a and 4 gave the corresponding one-electron reduced products, pyrazine-bridged and 4,4'-bipyridyl-bridged dimeric Ti(III) complexes 5 and 6, and compounds 2b and 2c afforded the same double chloride-bridged dimeric Ti(III) complex, [Cp2Ti]2(µ-Cl)2 (7), though 1a and 1b could not reduce Cp2TiCl2. Application of the organosilicon compounds as reducing agents for catalytic reactions revealed that the combination of 2c and a catalytic amount of Cp2TiCl2 assisted a Reformatsky reaction of nonanal and ethyl 2-bromoisobutyrate and its derivatives to give ethyl 3-hydroxy-2,2-dimethylundecanoate and its derivatives. In this coupling reaction, 2c served as the best reductant among 2a-c and 4 due to the suppression of an undesired reaction between 2c and ethyl 2-bromoalkanoates.

3.
J Am Chem Soc ; 135(16): 5986-9, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23581394

RESUMO

We developed a salt-free reduction of WCl6 using 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (MBTCD) in toluene to give a low-valent trinulcear tungsten complex involving W(II) and W(III) centers, while in the presence of redox active ligands such as α-diketone and α-diimine the same reduction produced W(IV) complexes with the corresponding redox-active ligands, (α-diketone)WCl4 and (α-diimine)WCl4. A W(VI) complex with two α-diketone ligands, (α-diketone)2WCl2, was found to be synthetically equivalent to low-valent W(IV) species that trapped azopyridine to give (α-diketone)WCl2(azopyridine).

4.
J Am Chem Soc ; 133(46): 18673-83, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21981364

RESUMO

High-valent tantalum complexes having redox-active α-diimine ligands, (α-diimine)TaCl(n) (n = 3, 4), are prepared by the reaction of TaCl(5), α-diimine ligands, and an organosilicon-based reductant, 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene. Reductive cleavage of the C-Cl bond of polyhaloalkanes is accomplished by trichlorotantalum complexes having dianionic α-diimine ligands via electron transfer from the dianionic ligands, whereas oxidative decomposition of tetraphenylborate is observed using tetrachlorotantalum complexes with monoanionic α-diimine ligands through electron transfer to the monoanionic ligands. Chemically oxidized or reduced complexes of (α-diimine)TaCl(4) are isolated as ligand-centered redox products, [Cp(2)Co][(α-diimine)TaCl(4)] and [(α-diimine)TaCl(4)][WCl(6)], where the α-diimine ligand coordinates to the metal center as a dianionic or neutral ligand, respectively. On the basis of EPR measurements of (α-diimine)TaCl(4) complexes (which are key intermediates for reductive cleavage of C-Cl bond and oxidative decomposition of tetraphenylborate), two redox isomers--a tantalum-centered radical and ligand-localized radical--are present in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...