Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iperception ; 9(2): 2041669518761191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755720

RESUMO

Vection is illusory self-motion elicited by visual stimuli and is more easily induced by radial contraction than expansion flow in adults. The asymmetric feature of vection was reexamined with 18 younger (age: 6-8 years) and 19 older children (age: 9-11 years) and 20 adults. In each experimental trial, participants observed either radial expansion or contraction flow; the latency, cumulative duration, and saturation of vection were measured. The results indicated that the latency for contraction was significantly shorter than that for expansion in all age-groups. In addition, the latency and saturation were significantly shorter and greater, respectively, in the younger or older children compared with the adults, regardless of the flow pattern. These results indicate that the asymmetry in vection for expansion or contraction flow emerges by school age, and that school-age children experience significantly more rapid and stronger vection than adults.

2.
Front Psychol ; 6: 749, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113828

RESUMO

Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information.

3.
Iperception ; 3(10): 804-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23483823

RESUMO

The visual-vestibular conflict theory asserts that visual-vestibular conflicts reduce vection and that vection strength is reduced with an increasing discrepancy between actual and expected vestibular activity. Most studies support this theory, although researchers have not always accepted them. To ascertain the conditions under which the theory of the visual-vestibular conflict can be applied, we measured circular vection strength accompanied by manipulation of the visual-otolith conflict by setting the axes of visual global motion (pitch, roll, and yaw) as either earth-horizontal or earth-vertical, using three different body positions (supine, left-lateral recumbent, and sitting upright). When the smaller stimulus was used, roll vection strength was greater with the visual-otolith conflict than without it, which contradicts the visual-vestibular conflict theory. We confirmed this result, as observers were able to distinguish circular vection from an illusory body tilt. Moreover, with observers in an upright position, the strength of yaw vection, which does not involve the visual-otolith conflict, increased and was almost equal to that of roll vection, which involves the visual-otolith conflict. This suggests that if the visual stimulus covers the entire visual field, the strength of circular vection around the earth-vertical axis exceeds that around the earth-horizontal axis, which is a finding consistent with the visual-vestibular conflict theory.

4.
J Neuroeng Rehabil ; 4: 39, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17922922

RESUMO

BACKGROUND: Visual motion often provokes vection (the induced perception of self-motion) and postural movement. Postural movement is known to increase during vection, suggesting the same visual motion signal underlies vection and postural control. However, self-motion does not need to be consciously perceived to influence postural control. Therefore, visual motion itself may affect postural control mechanisms. The purpose of the present study was to investigate the effects of visual motion and vection on postural movements during and after exposure to a visual stimulus motion. METHODS: Eighteen observers completed four experimental conditions, the order of which was counterbalanced across observers. Conditions corresponded to the four possible combinations of rotation direction of the visually simulated roll motion stimulus and the two different visual stimulus patterns. The velocity of the roll motion was held constant in all conditions at 60 deg/s. Observers assumed the standard Romberg stance, and postural movements were measured using a force platform and a head position sensor affixed to a helmet they wore. Observers pressed a button when they perceived vection. Postural responses and psychophysical parameters related to vection were analyzed. RESULTS: During exposure to the moving stimulus, body sway and head position of all observers moved in the same direction as the stimulus. Moreover, they deviated more during vection perception than no-vection-perception, and during no-vection-perception than no-visual-stimulus-motion. The postural movements also fluctuated more during vection-perception than no-vection-perception, and during no-vection-perception than no-visual-stimulus-motion, both in the left/right and anterior/posterior directions. There was no clear habituation for vection and posture, and no effect of stimulus type. CONCLUSION: Our results suggested that visual stimulus motion itself affects postural control, and supported the idea that the same visual motion signal is used for vection and postural control. We speculated that the mechanisms underlying the processing of visual motion signals for postural control and vection perception operate using different thresholds, and that a frame of reference for body orientation perception changed along with vection perception induced further increment of postural sway.


Assuntos
Ilusões/fisiologia , Percepção de Movimento/fisiologia , Movimento/fisiologia , Orientação/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...