Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mem. Inst. Oswaldo Cruz ; 113(2): 119-125, Feb. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-894893

RESUMO

BACKGROUND Treatment-refractory visceral leishmaniasis (VL) has become an important problem in many countries. OBJECTIVES We evaluated the antimony-resistance mechanisms of Leishmania infantum isolated from VL patients refractory or responsive to treatment with pentavalent antimony. METHODS Strains isolated from antimony-refractory patients (in vitro antimony-resistant isolates) and antimony-responsive patients (in vitro antimony-sensitive isolates) were examined. Morphological changes were evaluated by transmission electron microscopy after trivalent antimony exposure. P-glycoprotein (P-gp) efflux pump activity was evaluated using the pump-specific inhibitor verapamil hydrochloride, and the role of thiol in trivalent antimony resistance was investigated using the enzymatic inhibitor L-buthionine sulfoximine. FINDINGS Antimony treatment induced fewer alterations in the cellular structure of L. infantum resistant isolates than in that of sensitive isolates. P-gp efflux activity was not involved in antimony resistance in these isolates. Importantly, the resistant isolates contained higher levels of thiol compared to the sensitive isolates, and inhibition of thiol synthesis in the resistant isolates recovered their sensitivity to trivalent antimony treatment, and enhanced the production of reactive oxygen species in promastigotes exposed to the drug. MAIN CONCLUSIONS Our results demonstrate that isolates from patients with antimony-refractory VL exhibited higher thiol levels than antimony-sensitive isolates. This indicates that redox metabolism plays an important role in the antimony-resistance of New World VL isolates.


Assuntos
Resistência a Medicamentos , Leishmaniose Visceral/parasitologia , Antimônio/farmacologia , Butionina Sulfoximina , Testes de Sensibilidade Parasitária , Inibidores Enzimáticos
2.
Mem Inst Oswaldo Cruz ; 113(2): 119-125, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29236925

RESUMO

BACKGROUND Treatment-refractory visceral leishmaniasis (VL) has become an important problem in many countries. OBJECTIVES We evaluated the antimony-resistance mechanisms of Leishmania infantum isolated from VL patients refractory or responsive to treatment with pentavalent antimony. METHODS Strains isolated from antimony-refractory patients (in vitro antimony-resistant isolates) and antimony-responsive patients (in vitro antimony-sensitive isolates) were examined. Morphological changes were evaluated by transmission electron microscopy after trivalent antimony exposure. P-glycoprotein (P-gp) efflux pump activity was evaluated using the pump-specific inhibitor verapamil hydrochloride, and the role of thiol in trivalent antimony resistance was investigated using the enzymatic inhibitor L-buthionine sulfoximine. FINDINGS Antimony treatment induced fewer alterations in the cellular structure of L. infantum resistant isolates than in that of sensitive isolates. P-gp efflux activity was not involved in antimony resistance in these isolates. Importantly, the resistant isolates contained higher levels of thiol compared to the sensitive isolates, and inhibition of thiol synthesis in the resistant isolates recovered their sensitivity to trivalent antimony treatment, and enhanced the production of reactive oxygen species in promastigotes exposed to the drug. MAIN CONCLUSIONS Our results demonstrate that isolates from patients with antimony-refractory VL exhibited higher thiol levels than antimony-sensitive isolates. This indicates that redox metabolism plays an important role in the antimony-resistance of New World VL isolates.


Assuntos
Antimônio/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/ultraestrutura , Leishmaniose Visceral/parasitologia , Compostos de Sulfidrila/metabolismo , Butionina Sulfoximina/farmacologia , Resistência a Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Testes de Sensibilidade Parasitária
3.
Front Microbiol ; 8: 2265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201022

RESUMO

Visceral leishmaniasis (VL) is a systemic transmissible disease that remains to be a major global health problem. The inflammatory response during VL is characterized by the release of several cytokines and other pro-inflammatory mediators. Triggering Receptor Expressed on Myeloid Cells (TREM) are a group of evolutionarily conserved membrane-bound surface receptors expressed on neutrophils and monocytes. Engagement of TREM-1 directs intracellular signaling events that drive cytokine production, degranulation, and phagocytosis. In certain inflammatory-associated diseases, TREM-1 can also be found as a soluble form (sTREM-1), which can negatively regulate TREM-1 receptor signaling. In these studies, we now find that high levels of circulating sTREM-1 correlate directly with VL disease severity. In particular, high levels of sTREM-1 were observed in non-survivor VL patients. Furthermore, these levels of sTREM-1 positively correlated with liver size and negatively correlated with leukocyte counts and hemoglobin concentration. Moreover, we found that neutrophils exposure in vitro to Leishmania infantum modulates TREM-1, DAP12, and IL-8 gene expression, while also increasing release of sTREM-1. Finally, results revealed that higher sTREM-1 levels are associated with increasing parasite ratio. Taken together, these studies suggest that L. infantum may modulate TREM-1 in neutrophils and high levels of this molecule is associated with severe VL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...