Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 147, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047970

RESUMO

MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g-1 at a charge/discharge current density of 1.0 A g-1 in a 2.0 mol L-1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.

2.
ACS Omega ; 8(13): 11978-11986, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033825

RESUMO

The design and development of efficient and electrocatalytic sensitive nickel oxide nanomaterials have attracted attention as they are considered cost-effective, stable, and abundant electrocatalytic sensors. However, although innumerable electrocatalysts have been reported, their large-scale production with the same activity and sensitivity remains challenging. In this study, we report a simple protocol for the gram-scale synthesis of uniform NiO nanoflowers (approximately 1.75 g) via a hydrothermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE). By cyclic voltammetry, it was possible to observe the excellent performance of the modified electrode toward hydrazine oxidation in alkaline media, providing an oxidation overpotential of only +0.08 V vs Ag/AgCl. In these conditions, the peak current response increased linearly with hydrazine concentration ranging from 0.99 to 98.13 µmol L-1. The electrocatalytic sensor showed a high sensitivity value of 0.10866 µA L µmol-1. The limits of detection and quantification were 0.026 and 0.0898 µmol L-1, respectively. Considering these results, NiO nanoflowers can be regarded as promising surfaces for the electrochemical determination of hydrazine, providing interesting features to explore in the electrocatalytic sensor field.

3.
Mikrochim Acta ; 190(4): 159, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973457

RESUMO

A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (Fe3O4) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy. Morphological and structural properties of the resultant mag-MIP and mag-NIP were examined using TEM, FT-IR, and Vibrating Sample Magnetometer. Under optimized conditions, the m-GEC/mag-MIP sensor showed a linear range of 0.1-2 µmol L-1, with a limit of detection (LOD) of 0.030 µmol L-1. In addition, the proposed sensor responded selectively to Hcy compared to several interferents present in biological samples. The recovery values determined by differential pulse voltammetry (DPV) were close to 100% for natural and synthetic samples, indicating good method accuracy. The developed electrochemical sensor proves to be a suitable device for determining Hcy, with advantages related to magnetic separation and electrochemical analysis.


Assuntos
Grafite , Nanopartículas de Magnetita , Impressão Molecular , Polímeros Molecularmente Impressos , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Grafite/química , Impressão Molecular/métodos
4.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080076

RESUMO

Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.

5.
Langmuir ; 36(3): 704-714, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31846345

RESUMO

The site geometry preference of CO binding on stepped Pt single crystals in alkaline solution was investigated by in situ FTIR spectroscopy. The surfaces of the Pt single crystals consisted of different width (111) terraces, interrupted by (110) or (100) monatomic steps. Experiments carried out with CO adsorbed exclusively on the top of the steps revealed that only linearly bonded CO formed on the (110) steps, while two CO binding geometries (linear and bridge) were observed on the (100) steps. On one hand, for CO adsorbed only on the steps, the positions of the bands corresponding to linearly bonded CO were similar, regardless of the density of steps, suggesting the existence of an interaction between COads only along the line of the steps. On the other hand, for full CO coverage, the CO stretching frequencies and the geometry of bound CO were sensitive to the width of the (111) terraces and the step orientations. Consequently, the CO binding sites favored linearly bonded CO for surfaces consisting of shorter (111) terraces and (110) steps. Bridge-bonded CO was favored on surfaces consisting of shorter (111) terraces interrupted by (100) steps. In order to understand the origin of the preference of CO binding sites, the results were compared to the corresponding behavior in acid media, which revealed that, in addition to the effect inherent to the Pt surface, the charge on the metal side in an aqueous environment should be taken into consideration. The analysis suggested that the CO adlayers formed at full coverage in acidic and alkaline media had different structures. On the other hand, the structure of the layer of CO adsorbed only at the steps was independent of pH.

7.
J Phys Chem Lett ; 9(6): 1206-1210, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29451798

RESUMO

This works deals with the identification of preferential site-specific activation at a model Pt surface during a multiproduct reaction. The (110)-type steps of a Pt(332) surface were selectively marked by attaching isotope-labeled 13CO molecules to them, and ethanol oxidation was probed by in situ Foureir transfrom infrared spectroscopy in order to precisely determine the specific sites at which CO2, acetic acid, and acetaldehyde were preferentially formed. The (110) steps were active for splitting the C-C bond, but unexpectedly, we provide evidence that the pathway of CO2 formation was preferentially activated at (111) terraces, rather than at (110) steps. Acetaldehyde was formed at (111) terraces at potentials comparable to those for CO2 formation also at (111) terraces, while the acetic acid formation pathway became active only when the (110) steps were released by the oxidation of adsorbed 13CO, at potentials higher than for the formation of CO2 at (111) terraces of the stepped surface.

8.
Luminescence ; 31(1): 288-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26136382

RESUMO

This paper describes a new technique for the determination of captopril in pharmaceutical formulations, implemented by employing multicommuted flow analysis. The analytical procedure was based on the reaction between hypochlorite and captopril. The remaining hypochlorite oxidized luminol that generated electromagnetic radiation detected using a homemade luminometer. To the best of our knowledge, this is the first time that this reaction has been exploited for the determination of captopril in pharmaceutical products, offering a clean analytical procedure with minimal reagent usage. The effectiveness of the proposed procedure was confirmed by analyzing a set of pharmaceutical formulations. Application of the paired t-test showed that there was no significant difference between the data sets at a 95% confidence level. The useful features of the new analytical procedure included a linear response for captopril concentrations in the range 20.0-150.0 µmol/L (r = 0.997), a limit of detection (3σ) of 2.0 µmol/L, a sample throughput of 164 determinations per hour, reagent consumption of 9 µg luminol and 42 µg hypochlorite per determination and generation of 0.63 mL of waste. A relative standard deviation of 1% (n = 6) for a standard solution containing 80 µmol/L captopril was also obtained.


Assuntos
Captopril/análise , Análise de Injeção de Fluxo , Luminescência , Preparações Farmacêuticas/química , Química Farmacêutica
9.
Analyst ; 137(8): 1904-12, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22377975

RESUMO

Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by certain strains of freshwater cyanobacteria toxic for humans and animals. The electrochemical behaviour of microcystin-LR (MC-LR) at a glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). The oxidation of MC-LR is a diffusion-controlled irreversible and pH-independent process that occurs with the transfer of only one electron and does not involve the formation of any electroactive oxidation product. Upon incubation in different pH electrolytes, homogeneous degradation of MC-LR in solution was electrochemically detected by the appearance of a new oxidation peak at a lower potential. The electrochemical behaviour of chemically degraded MC-LR is an irreversible, pH-dependent process, and involves the formation of two redox products that undergo reversible oxidation. The formation of degradation products of MC-LR was confirmed by HPLC with UV detection at room temperature. Experiments were also carried out in solutions containing constituent MC-LR amino acids, which enabled the understanding of the MC-LR electron transfer reaction and degradation. An oxidation mechanism for MC-LR is proposed.


Assuntos
Técnicas Eletroquímicas , Microcistinas/química , Cromatografia Líquida de Alta Pressão , Eletrodos , Concentração de Íons de Hidrogênio , Toxinas Marinhas , Oxirredução
10.
Anal Chim Acta ; 664(2): 144-50, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20363396

RESUMO

The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using the host-guest binding of a supramolecular complex at a host surface by combining a self-assembled monolayer (SAM) of mono-(6-deoxy-6-mercapto)-beta-cyclodextrin (betaCDSH), iron (III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeTMPyP) and cyclodextrin-functionalized gold nanoparticles (CDAuNP). The supramolecular modified electrode showed excellent catalytic activity for oxygen reduction. The reduction potential of oxygen was shifted about 200 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare gold electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves probably 4-electrons with a rate constant (k(obs)) of 7 x 10(4) mol(-1) Ls(-1). A linear response range from 0.2 up to 6.5 mg L(-1), with a sensitivity of 5.5 microA L mg(-1) (or 77.5 microA cm(-2) L mg(-1)) and a detection limit of 0.02 mg L(-1) was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation was 3.0% for 10 measurements of a solution of 6.5 mg L(-1) oxygen.


Assuntos
Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Oxigênio/química , Catálise , Ciclodextrinas/química , Eletrodos
11.
Analyst ; 133(12): 1692-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19082071

RESUMO

This work reports the use of iron tetrapyridinoporphyrazine (FeTPyPz) as a highly selective catalyst in the construction of an electrochemical sensor for estradiol valerate (EV) determination. The sensor was prepared by modifying a carbon paste with FeTPyPz. The best results were obtained in a mixture of acetonitrile (MeCN) and 0.1 mol L(-1) phosphate buffer solution (pH 6.0) in a volume ratio of 47 : 53. A linear response range was observed between 45 and 450 micromol L(-1) with a sensitivity of 12160 +/- 306 microA L mol(-1) and quantification and detection limits of 45 and 13 micromol L(-1), respectively. The repeatability, expressed as the relative standard deviation (RSD) for n = 10, was 5.9% ([EV] = 50 micromol L(-1)). The reproducibility (RSD) for the sensor construction was better than 4% and the operational stability (RSD) over 50 measurements was 1.8%. A detailed investigation regarding the selectivity and electrochemical characteristics was carried out. Finally, in a first step to evaluate the application potential of the sensor, it was successfully applied to determine EV in a commercial formulation.


Assuntos
Estradiol/análogos & derivados , Soluções Tampão , Carbono , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica/métodos , Estradiol/análise , Concentração de Íons de Hidrogênio , Metaloporfirinas/química , Microeletrodos , Solventes
12.
Talanta ; 76(5): 1097-104, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18761161

RESUMO

The development of a highly sensitive voltammetric sensor for reduced l-glutathione (GSH) using a basal plane pyrolytic graphite (BPPG) electrode modified with iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes (MWCNT) is described. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to verify the morphologies and composition of the MWCNT after modification with the FeT4MPyP complex. The modified electrode showed very efficient electrocatalytic activity for l-glutathione oxidation, substantially decreasing the oxidation peak to -0.025V vs Ag/AgCl. A linear response range from 5 micromolL(-1) to 5 mmolL(-1) was obtained with a sensitivity of 703.41 microALmmol(-1). The detection limit for GSH determination was 0.5 micromolL(-1) and the relative standard deviation (R.S.D.) for 10 determinations of 250 micromolL(-1) GSH was 1.4%. The modified electrode was applied for GSH determination in erythrocyte samples and the results were in agreement to those obtained by a comparative method described in the literature.


Assuntos
Glutationa/química , Metaloporfirinas/química , Nanotubos de Carbono/química , Adsorção , Artefatos , Soluções Tampão , Carbono/química , Catálise , Eletroquímica , Eletrodos , Concentração de Íons de Hidrogênio , Cinética , Nanocompostos/química , Oxirredução , Rotação , Propriedades de Superfície
13.
Talanta ; 75(2): 333-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371887

RESUMO

In this work, an amperometric sensor for nitrite detection based on a glassy carbon electrode modified with copper tetrasulphonated phthalocyanine immobilized by polycationic poly-L-lysine film is presented. The modified electrode showed an excellent catalytic activity toward nitrite oxidation. A linear response range from 0.12 up to 12.20 micromol L(-1) was obtained with a sensitivity of 0.83 microA L micromol(-1). The detection limit for nitrite was 36 nmol L(-1). The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was 1% for 10 measurements of 10 micromol L(-1) nitrite solution. Finally, the developed sensor was applied for nitrite determination in water samples and the results were in agreement to the comparative method. The average recovery for the samples was 101 (+/-4)%.

14.
Anal Chim Acta ; 612(1): 29-36, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18331855

RESUMO

The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (k(obs)) of 3x10(5) mol(-1) L s(-1). A linear response range from 0.2 up to 6.4 mg L(-1), with a sensitivity of 4.12 microA L mg(-1) (or 20.65 microA cm(-2) L mg(-1)) and a detection limit of 0.06 mg L(-1) were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L(-1) oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose.

15.
Anal Bioanal Chem ; 388(8): 1907-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17593356

RESUMO

This work describes the application of an ordinary pyrolitic graphite electrode modified by metallophthalocyanine allied to square wave voltammetry for the study of the electrochemical behavior of the herbicide paraquat and the development of a method for its analytical determination in natural water samples. Preliminary experiments indicated that the best responses, considering the intensities of the current and voltammetric profile for the paraquat reduction process, were obtained when the electrode modified by cobalt phthalocyanine was employed, which had a better catalytic activity as a result of this modification compared with that for an unmodified electrode and electrodes modified by iron, manganese and the acid form of the phthalocyanines. Studies of the concentration of cobalt phthalocyanine and the adsorption time showed that 1.0x10(-4) mol L(-1) cobalt phthalocyanine with an adsorption time of 10 min was sufficient to obtain reliability and stability of modification for employment in the development of the electroanalytical procedure for paraquat determination in natural water samples. The variation in pH of a 0.10 mol L(-1) Britton-Robinson buffer solution and the square wave parameters indicated that the best conditions to reduce paraquat were pH 7.0, a frequency of 100 s(-1), a scan increment of 2 mV and a square wave amplitude of 50 mV. Under such conditions, the variation of paraquat concentrations from 5.00x10(-7) to 2.91x10(-5) mol L(-1) showed a linear relation, with detection and quantification limits of 26.53 and 88.23 microg L(-1); those values were lower than the maximum limits for drinking water permitted by the Brazilian Environmental Council (100 microg L(-1)), indicating that the method could be employed to analyze paraquat in drinking water samples.


Assuntos
Eletroquímica/métodos , Paraquat/análise , Praguicidas/análise , Eletrodos , Grafite , Indóis , Isoindóis
16.
Talanta ; 70(3): 588-94, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970813

RESUMO

The development of a highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with alternated layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) and cobalt(II) tetrasulfonated phthalocyanine (CoTSPc) is described. The modified electrode showed an excellent catalytic activity and stability for the nitrite oxidation decreasing the peak potentials about 200mV toward less positive values and presenting much higher peak currents than those obtained on the bare GC electrode. A linear response range of 0.2-8.6mumoll(-1), with a sensitivity of 0.37muAlmumol(-1) and detection limit of 0.04mumoll(-1) were obtained with this sensor. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was verified to be 1.4% for 10 measurements of 0.2mumoll(-1) nitrite solution. Interference caused by common ions has been investigated in simulated mixtures containing high concentration level of interfering ions and the sensor was found to be tolerant against these ions. The developed sensor was applied for the nitrite determination in water samples and the results were in agreement with those obtained by a comparative method described in the literature. The average recovery for these samples was 100.1 (+/-0.7)%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...