Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 172: 106-112, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342342

RESUMO

Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line.


Assuntos
Água Subterrânea/química , Monitoramento de Radiação , Radônio/análise , Poluentes Radioativos da Água/análise , Geologia , Japão
2.
Nature ; 444(7118): 473-6, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17122854

RESUMO

Determining the seismic fracture energy during an earthquake and understanding the associated creation and development of a fault zone requires a combination of both seismological and geological field data. The actual thickness of the zone that slips during the rupture of a large earthquake is not known and is a key seismological parameter in understanding energy dissipation, rupture processes and seismic efficiency. The 1999 magnitude-7.7 earthquake in Chi-Chi, Taiwan, produced large slip (8 to 10 metres) at or near the surface, which is accessible to borehole drilling and provides a rare opportunity to sample a fault that had large slip in a recent earthquake. Here we present the retrieved cores from the Taiwan Chelungpu-fault Drilling Project and identify the main slip zone associated with the Chi-Chi earthquake. The surface fracture energy estimated from grain sizes in the gouge zone of the fault sample was directly compared to the seismic fracture energy determined from near-field seismic data. From the comparison, the contribution of gouge surface energy to the earthquake breakdown work is quantified to be 6 per cent.

3.
J Colloid Interface Sci ; 275(1): 225-8, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15158402

RESUMO

H2 generation during mechanochemical treatment of kaolinite by dry grinding was examined by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and BET surface area measurement. The H2 concentration in the mill pot, measured by gas chromatography, increased with grinding time up to a maximum concentration of 156 ppm (0.35 micromol) after 600 min. This H2 generation is considered to occur as a result of three processes: (1) structural destruction characterized by the delamination and loss of hydroxyl groups as a result of dry grinding, (2) transformation of liberated hydroxyls into water molecules by mechanochemical effects such as prototropy, and (3) H2 generation through reaction between surface water molecules and mechanoradicals created by the rupture of Si-O or Al-O-Si bonds. Although the surface area plateaued after 240 min grinding, the H2 concentration continued to increase, indicating that surface mechanoradicals are created during this later grinding stage. Thus, H2 generation can be used as an indicator of mechanoradical formation during mechanochemical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...