Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 52(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477145

RESUMO

Triple­negative breast cancer (TNBC), a highly metastatic subtype of breast cancer, and it has the worst prognosis among all subtypes of breast cancer. However, no effective systematic therapy is currently available for TNBC metastasis. Therefore, novel therapies targeting the key molecular mechanisms involved in TNBC metastasis are required. The present study examined whether the expression levels of human epidermal growth factor receptor 3 (HER3) were associated with the metastatic phenotype of TNBC, and evaluated the potential of HER3 as a therapeutic target in vitro and in vivo. A new highly metastatic 4T1 TNBC cell line, termed 4T1­L8, was established. The protein expression levels in 4T1­L8 cells were measured using luminex magnetic bead assays and western blot analysis. The HER3 expression levels and distant metastasis­free survival (DMFS) in TNBC were analyzed using Kaplan­Meier Plotter. Transwell migration and invasion assays were performed to detect migration and invasion. The anti­metastatic effects were determined in an experimental mouse model of metastasis. The results revealed that the increased expression of the HER3/Akt/mTOR pathway was associated with a greater level of cell migration, invasion and metastasis of TNBC cells. In addition, it was found that high expression levels of HER3 were associated with a poor DMFS. The inhibition of the HER3/Akt/mammalian target of rapamycin (mTOR) pathway decreased the migration, invasion and metastasis of TNBC cells by decreasing the expression of C­X­C chemokine receptor type 4 (CXCR4). Furthermore, treatment of metastatic TNBC cells with everolimus inhibited their migration, invasion and metastasis by decreasing CXCR4 expression. Thus, targeting the HER3/Akt/mTOR pathway opens up a new avenue for the development of therapeutics against TNBC metastasis; in addition, everolimus may prove to be an effective therapeutic agent for the suppression of TNBC metastasis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Everolimo/farmacologia , Everolimo/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Movimento Celular , Mamíferos/metabolismo , Receptores CXCR4/genética
2.
Clin Exp Med ; 23(5): 1597-1607, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36451049

RESUMO

Multiple myeloma (MM) frequently acquires multidrug resistance (MDR), which is due to poor prognosis. Our previous study indicated that high expression of Survivin and multidrug resistance protein 1 (MDR1) and decreased expression of Bim are associated with MDR in adriamycin- and dexamethasone-resistant cells. However, the fundamental mechanism of MDR in adriamycin- and dexamethasone-resistant MM cells is still unidentified. In this study, we examined the MDR mechanism in adriamycin- and dexamethasone-resistant cells. RPMI8226/ADM, ARH-77/ADM, RPMI8226/DEX, and ARH-77/DEX cells exhibited enhanced nuclear factor κB (NF-κB) p65, Akt, and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Combination treatment with NF-κB p65, phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinase 1/2 (MEK1/2) inhibitors resensitized to adriamycin and dexamethasone via increased Bim expression. Although treatment with MDR1 or Survivin siRNA did not overcome adriamycin and dexamethasone resistance in RPMI8226/ADM and RPMI8226/DEX cells, administration of Bim siRNA induced adriamycin and dexamethasone resistance in RPMI8226 cells. Moreover, low expression of Bim was related to poor prognosis in MM patients. These results indicate that activation of NF-κB p65, Akt, and ERK1/2 is associated with adriamycin and dexamethasone resistance via decreasing Bim expression, and these signal inhibitor combinations overcome drug resistance in MM. These findings suggest that combination treatment with these inhibitors and adriamycin or dexamethasone may be a promising therapy for adriamycin- and dexamethasone-resistant MM.


Assuntos
Mieloma Múltiplo , NF-kappa B , Humanos , NF-kappa B/metabolismo , Doxorrubicina/farmacologia , Survivina/genética , Survivina/metabolismo , Survivina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Baixo , Mieloma Múltiplo/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Dexametasona/farmacologia , Dexametasona/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico
3.
BMB Rep ; 56(2): 78-83, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195570

RESUMO

Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment. [BMB Reports 2023; 56(2): 78-83].


Assuntos
Equinomicina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Equinomicina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Resistencia a Medicamentos Antineoplásicos , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...