Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 258: 119464, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908659

RESUMO

Leaf ozone uptake through the stomata is an important index for the ozone risk assessments on trees. Stomatal conductance (gs) and ozone concentration ([O3]), determinants of the leaf ozone uptake, are known to show vertical gradients within a tree canopy. However, less is known about the within-canopy vertical gradient of leaf ozone uptake. This study was aimed to elucidate how the vertical gradient of [O3] and gs affect needle ozone uptake within a canopy of mature Cryptomeria japonica trees in a suburban forest at Tokyo, Japan. For this purpose, a multilayer gas exchange model was applied to estimate the vertical gradient of needle gs and the accumulated ozone uptake during the study period (POD1, Phytotoxic Ozone Dose above a threshold of 1 nmol m-2 s-1). In addition, we also tested several scenarios of vertical gradient of [O3] within the canopy for sensitivity analysis. The POD1 was declined from the top to the bottom of the canopy. This tendency strongly depended on the vertical gradient of gs and was hardly affected by the changes in simulated vertical reductions of the [O3]. We further assessed the photosynthesis of sunlit needles (needles absorbing both direct and diffuse light) and shaded needles (needles only absorbing diffuse light). The photosynthesis of shaded needles in the upper half of the canopy made a great contribution to the entire canopy photosynthesis. In addition, given that their POD1 was lower than that of sunlit needles, ozone may affect sunlit and shaded needles differently. We concluded that these considerations should be incorporated into modeling of the calculation of ozone uptake for mature trees to make accurate predictions of the ozone effects on trees at the canopy scale.

2.
Anal Chim Acta ; 1278: 341723, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709464

RESUMO

BACKGROUND: Chromium isotopes have been used to trace geochemical and cosmochemical processes in the past. However, the presence of multivalent Cr species has made it difficult to isolate Cr from geological samples, particularly for samples with a low Cr mass fraction. RESULTS: Here, a simple three-step ion exchange chromatography procedure is presented to separate Cr from various sample matrices, ranging from ultramafic to felsic rocks. Throughout each of the column chromatography step, 1 mL of cation exchange resin AG50W-X8 (200-400 mesh) was used as the stationary phase and oxalic acid as a chelating agent, was used in addition to the inorganic acids. This method yielded high recoveries of Cr [93 ± 8% (2SD, N = 7)] regardless of the lithology. The total procedural blank of Cr was <0.5 ng. We also developed a double spike-total evaporation-thermal ionization mass spectrometry (DS-TE-TIMS) technique that significantly reduced sample consumption to ∼20 ng of Cr per each measurement of mass-dependent 53Cr/52Cr. SIGNIFICANCE: This study achieved a 2SD external precision of 0.02‰ for the analysis of NIST NBS3112a and of 0.01-0.07‰ for the geological samples. This study enabled high-precision Cr isotope analysis in geological samples with various matrix and Cr compositions using relatively small sample volumes.

3.
Life (Basel) ; 13(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37511823

RESUMO

The Hayabusa2 mission was tasked with returning samples from the C-complex asteroid Ryugu (1999 JU3), in order to shed light on the formation, evolution and composition of such asteroids. One of the main science objectives was to understand whether such bodies could have supplied the organic matter required for the origin of life on Earth. Here, a review of the studies concerning the organic matter within the Ryugu samples is presented. This review will inform the reader about the Hayabusa2 mission, the nature of the organic matter analyzed and the various interpretations concerning the analytical findings including those concerning the origin and evolution of organic matter from Ryugu. Finally, the review puts the findings and individual interpretations in the context of the current theories surrounding the formation and evolution of Ryugu. Overall, the summary provided here will help to inform those operating in a wide range of interdisciplinary fields, including planetary science, astrobiology, the origin of life and astronomy, about the most recent developments concerning the organic matter in the Ryugu return samples and their relevance to understanding our solar system and beyond. The review also outlines the issues that still remain to be solved and highlights potential areas for future work.

4.
Sci Total Environ ; 888: 164005, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201825

RESUMO

The amount of ozone absorbed by the tree leaves is a critical factor determining the ozone effects on forest trees. Stomatal ozone uptake of a forest canopy can be estimated from the ozone concentration and canopy conductance (gc) determined by the sap-flow-based method. This method measures sap flow as a metric of crown transpiration and then derives gc. The thermal dissipation method (TDM) has been used to measure sap flow in most studies adopting this approach. However, recent studies have indicated that TDM may underestimate sap flow, especially in ring-porous tree species. In the present study, the accumulated stomatal ozone uptake (AFST) of a stand of Quercus serrata, a typical ring-porous tree species in Japan, was estimated by measuring sap flow using species-specific calibrated TDM sensors. Laboratory calibration of the TDM sensors revealed that the parameters (α and ß) in an equation converting outputs from the sensors (K) to sap flux density (Fd) were substantially larger for Q. serrata than those originally proposed by Granier (1987). The Fd measured in the Q. serrata stand using calibrated TDM sensors were significantly larger than those obtained using non-calibrated sensors. The diurnal average of gc and daytime AFST (10.4 mm s-1 and 10.96 mmol O3 m-2 month-1) of the Q. serrata stand estimated by using calibrated TDM sensors in August 2020 were similar to those of forests dominated by Quercus species estimated by micrometeorological measurements in previous studies. In contrast, the gc and daytime AFST of the Q. serrata stand estimated by non-calibrated TDM sensors were remarkably lower than those estimated by micrometeorological measurements in previous studies, indicating severe underestimation. Therefore, it is strongly recommended that sap flow sensors are species-specifically calibrated when estimating the canopy conductance and ozone uptake of forests dominated by ring-porous trees based on sap flow measurements using TDM.


Assuntos
Ozônio , Quercus , Folhas de Planta , Florestas , Árvores , Transpiração Vegetal , Água
5.
Nat Commun ; 14(1): 1482, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932072

RESUMO

All life on Earth contains amino acids and carbonaceous chondrite meteorites have been suggested as their source at the origin of life on Earth. While many meteoritic amino acids are considered indigenous, deciphering the extent of terrestrial contamination remains an issue. The Ryugu asteroid fragments (JAXA Hayabusa2 mission), represent the most uncontaminated primitive extraterrestrial material available. Here, the concentrations of amino acids from two particles from different touchdown sites (TD1 and TD2) are reported. The concentrations show that N,N-dimethylglycine (DMG) is the most abundant amino acid in the TD1 particle, but below detection limit in the other. The TD1 particle mineral components indicate it experienced more aqueous alteration. Furthermore, the relationships between the amino acids and the geochemistry suggest that DMG formed on the Ryugu progenitor body during aqueous alteration. The findings highlight the importance of aqueous chemistry for defining the ultimate concentrations of amino acids in primitive extraterrestrial samples.

6.
Org Biomol Chem ; 20(45): 8925-8931, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321688

RESUMO

The anion recognition ability of 2,4,6-triisopropylphenylsilanetriol 5 has been evaluated by 1H NMR titrations in MeCN-d3. The anion recognition ability of silanetriol 5 was greater than those of the structurally related silanediols and silanemono-ol, although less effective than those of 1,3-disiloxane-1,3-diol and 1,3-disiloxane-1,1,3,3-tetraol. From the comparison of the association constants and DFT calculations, all three silanol groups of 5 cooperatively hydrogen bonded to anionic species. The catalytic ability of silanetriol 5 for the addition of indole to ß-nitrostyrene in CH2Cl2 has also been evaluated. Silanetriol 5 acts as a more effective organocatalyst than the corresponding silanediol in this reaction.


Assuntos
Ânions , Ânions/química , Acetonitrilas
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(6): 227-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35691845

RESUMO

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.


Assuntos
Meteoroides , Sistema Solar , Água
8.
Anal Chim Acta ; 1181: 338934, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556216

RESUMO

Nickel isotope ratios have traditionally been used as an important tracer in cosmochemistry, and recently, it has gained attention in geochemistry, biochemistry, and environmental sciences with the development of MC-ICP-MS. Purification of Ni before isotope measurement is mandatory for obtaining precise data, which has been commonly achieved with ion-exchange chromatography, employing dimethylglyoxime (DMG) as a chelating agent for Ni. However, it has been pointed out that the use of DMG can adversely affect the isotope measurement due to insufficient Ni recovery and mass bias during measurement caused by the remaining DMG. Ni isolation procedures without the usage of DMG were innovated, but they have disadvantages such as the necessity of complex separation methods, high Ni blank, and matrix-dependent Ni recovery. Here, we present a simple Ni isolation procedure without using DMG but with the aid of oxalic acid along with common inorganic acids, achieving near-complete recovery of Ni with low blanks [0.7 ± 0.3 ng (2SD, n = 4)] only using three ion exchange column steps. To validate our method and strengthen the Ni isotope database of reference materials, 60Ni/58Ni of 20 geological reference materials, covering wide matrix compositions, were measured by MC-ICP-MS using the double-spike method. The results have shown that high recovery of Ni, independent of the sample matrix elements was achieved (98 ± 4%) and the 60Ni/58Ni was measured with a 2SD of 0.006-0.084‰ from samples containing 100-200 ng Ni.


Assuntos
Isótopos , Níquel , Espectrometria de Massas , Oximas
10.
Astrobiology ; 20(7): 916-921, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543220

RESUMO

The Hayabusa2 mission successfully collected samples from the asteroid Ryugu last year and will return these to Earth in December 2020. It is anticipated that the samples will enable the analysis of terrestrially uncontaminated organic matter and minerals. Such analyses are in turn expected to elucidate the evolution of organic matter through Solar System history, including the origination and processing of biogenically important molecules, which could have been utilized by the first organisms on Earth. In anticipation, studies have made predictions concerning the properties of Ryugu, including its composition. The spectral characteristics of Ryugu, such as albedo, have been employed to relate the asteroid to members of the carbonaceous chondrite group that have been identified on Earth. However, the recent Hayabusa2 touchdown highlights a disparity between the color of surfaces of displaced platy fragments, indicating a brightening trend for the surface exposed to space compared to that facing into the body. Here we present a mass balance calculation with reference to data from the literature, which indicates that Ryugu may contain a significantly higher abundance of organic matter (likely >50%) than the currently most accepted meteorite analogues. A high organic content may result in high levels of extractable organic matter for the second touchdown site, where the spacecraft sampled freshly exposed material. However, high abundances of insoluble aromatic/graphitic rich organic matter may be present in the first touchdown site, which sampled the surface of Ryugu that had been exposed to space. Moreover, we suggest that the potentially high organic abundance and the rubble-pile nature of Ryugu may originate from the capture of rocky debris by a comet nucleus and subsequent water-organic-mineral interactions and sublimation of water ice.


Assuntos
Meio Ambiente Extraterreno/química , Meteoroides , Minerais/análise , Compostos Orgânicos/análise , Voo Espacial , Minerais/química , Compostos Orgânicos/química , Sistema Solar , Análise Espectral
11.
Chem Asian J ; 14(23): 4179-4182, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31691478

RESUMO

Novel polyhedral structures were prepared with a butterfly-shape composed of oligosiloxane wings and a double-decker silsesquioxane (DDSQ) body. The compounds were synthesized in two steps from commercially available alkoxysilanes, and their structures were confirmed using spectroscopic methods and X-ray crystallography. Not like other phenyl-substituted cage silsesquioxanes, these butterfly cages show very good solubility in common organic solvents. The crystal structures clearly showed their unique features: a larger space with longer siloxane chains and a very flexible framework. Moreover, these compounds are thermally stable with a Td5 (5 % weight loss temperature) over 320 °C.

12.
Nat Commun ; 10(1): 3022, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289264

RESUMO

The geochemical variabilities in intraplate basalts (IB) from the West African passive margin (WAPM) region, have generally been employed to indicate the presence of recycled materials in an associated upwelling mantle plume. However, the absence of time-progressive linear hotspot tracks in WAPM-IB make it difficult to explain their genesis solely by the mantle plume hypothesis. Here, we show that the Sr-Nd-Hf-Pb isotopic variations in basalts from most of the WAPM-IB could have mainly attributed to the derivation from two types of fusible regions of the refertilized subcontinental lithospheric mantle (SCLM) and the sub-lithospheric mantle. The locations and magma genesis of WAPM-IB are strongly related to the distance from the Mesozoic rift axis and the structure of the rifted SCLM. The melting of the source region can possibly be attributed to small-scale mantle convection at the base of the SCLM without the involvement of a mantle plume.

13.
J Environ Radioact ; 204: 86-94, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30986719

RESUMO

Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 µm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-µm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-µm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-µm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.


Assuntos
Radioisótopos de Césio/análise , Poeira/análise , Poluentes Radioativos do Solo/análise , Solo/química , Argila/química , Japão , Malásia
14.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(4): 165-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971619

RESUMO

A comprehensive geochemical study of the Chelyabinsk meteorite reveals further details regarding its history of impact-related fragmentation and melting, and later aqueous alteration, during its transit toward Earth. We support an ∼30 Ma age obtained by Ar-Ar method (Beard et al., 2014) for the impact-related melting, based on Rb-Sr isotope analyses of a melt domain. An irregularly shaped olivine with a distinct O isotope composition in a melt domain appears to be a fragment of a silicate-rich impactor. Hydrogen and Li concentrations and isotopic compositions, textures of Fe oxyhydroxides, and the presence of organic materials located in fractures, are together consistent with aqueous alteration, and this alteration could have pre-dated interaction with the Earth's atmosphere. As one model, we suggest that hypervelocity capture of the impact-related debris by a comet nucleus could have led to shock-wave-induced supercritical aqueous fluids dissolving the silicate, metallic, and organic matter, with later ice sublimation yielding a rocky rubble pile sampled by the meteorite.


Assuntos
Meteoroides , Água/química , Planeta Terra , Evolução Planetária
15.
Geochim Cosmochim Acta ; 245: 597-627, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30983599

RESUMO

Northwest Africa (NWA) 6704 is a unique achondrite characterized by a near-chondritic major element composition with a remarkably intact igneous texture. To investigate the origin of this unique achondrite, we have conducted a combined petrologic, chemical, and 187Re-187Os, O, and Ti isotopic study. The meteorite consists of orthopyroxene megacrysts (En55-57Wo3-4Fs40-42; Fe/Mn = 1.4) up to 1.7 cm in length with finer interstices of olivine (Fa50-53; Fe/Mn = 1.1-2.1), chromite (Cr# ~ 0.94), awaruite, sulfides, plagioclase (Ab92An5Or3) and merrillite. The results of morphology, lattice orientation analysis, and mineral chemistry indicate that orthopyroxene megacrysts were originally hollow dendrites that most likely crystallized under high super-saturation and super-cooling conditions (1-102 °C/h), whereas the other phases crystallized between branches of the dendrites in the order of awaruite, chromite → olivine → merrillite → plagioclase. In spite of the inferred high supersaturation, the remarkably large size of orthopyroxene can be explained as a result of crystallization from a melt containing a limited number of nuclei that are preserved as orthopyroxene megacryst cores having high Mg# or including vermicular olivine. The Re-Os isotope data for bulk and metal fractions yield an isochron age of 4576 ± 250 Ma, consistent with only limited open system behavior of highly siderophile elements (HSE) since formation. The bulk chemical composition is characterized by broadly chondritic absolute abundances and only weakly fractionated chondrite-normalized patterns for HSE and rare earth elements (REE), together with substantial depletion of highly volatile elements relative to chondrites. The HSE and REE characteristics indicate that the parental melt and its protolith had not undergone significant segregation of metals, sulfides, or silicate minerals. These combined results suggest that a chondritic precursor to NWA 6704 was heated well above its liquidus temperature so that highly volatile elements were lost and the generated melt initially contained few nuclei of relict orthopyroxene, but the melting and subsequent crystallization took place on a timescale too short to allow magmatic differentiation. Such rapid melting and crystallization might occur as a result of impact on an undifferentiated asteroid. The O-Ti isotope systematics (Δ17O = -1.052 ± 0.004, 2 SD; ε50Ti = 2.28 ± 0.23, 2 SD) indicate that the NWA 6704 parent body sampled the same isotopic reservoirs in the solar nebula as the carbonaceous chondrite parent bodies. This is consistent with carbonaceous chondrite-like refractory element abundances and oxygen fugacity (FMQ = -2.6) in NWA 6704. Yet, the Si/Mg ratio of NWA 6704 is remarkably higher than those of carbonaceous chondrites, suggesting significant nebular fractionation of forsterite in its provenance.

16.
Chemistry ; 25(7): 1683-1686, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511778

RESUMO

Symmetric and asymmetric (Janus-type) new "lantern cage" siloxanes (PhSiO1.5 )4 (Me2 SiO)4 (RSiO1.5 )4 (R=Ph or iBu) were synthesized through reaction of all-cis-[PhSi(OSiMe2 Br)O]4 with all-cis-[RSi(OH)O]4 (R=Ph or iBu). These precursors were obtained by facile two or three-step reactions from commercially available compounds. The spectroscopic properties of the resulting products were fully characterized and they showed high thermal stability and sublimation without decomposition. The crystal structures clearly indicated that the internal vacancy volumes of the lantern cages are considerably larger than that of octaphenylsilsesquioxane (PhSiO1.5 )8 . DFT calculations of the lantern cage showed a distinctly different electronic state from that of octasilsesquioxane. These results suggest that lantern cage siloxanes have a characteristic "field" in the molecule.

17.
Sci Rep ; 8(1): 9887, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959384

RESUMO

The chemical compositions of the residues of the mantle melting that produces mid-ocean ridge basalt can be altered by fluid-rock interactions at spreading ridges and, possibly, during seawater penetration along bending-related faults in plates approaching trenches. This chemically modified rock, if subducted deeply and after long-term residence within the deep Earth, is a potential source of chemical heterogeneity in the mantle. Here, we demonstrate that peridotites from the Horoman massif preserve the chemical signatures of sub-seafloor hydrothermal (SSH) alteration at a mid-ocean ridge approximately one billion years ago. These rocks have evolved chemically subsequent to this SSH alteration; however, they retain the SSH-associated enrichments in fluid mobile elements and H2O despite their long-term residence within the mantle. Our results indicate that ancient SSH alteration resulting in the production of sulfide leads to Pb enrichment that could affect the present-day Pb isotopic evolution of the silicate earth. Evidence from the Horoman massif of the recycling of hydrous refractory domains into the mantle suggests that both the flux of H2O content into the mantle and the size of the mantle H2O reservoir are higher than have been estimated recently.

18.
J Gastroenterol Hepatol ; 32(9): 1611-1616, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28114749

RESUMO

BACKGROUND AND AIM: It remains unclear whether primary biliary cholangitis (PBC) represents a risk factor for secondary osteoporosis. METHODS: A case-control study was conducted to examine bone mineral density and bone turnover markers in middle-aged postmenopausal PBC patients without liver cirrhosis. We compared the incidence of low bone mineral density between propensity-score matched subgroups of PBC patients and healthy controls and investigated the mechanisms underlying unbalanced bone turnover in terms of the associations between bone turnover markers and PBC-specific histological findings. RESULT: Our analysis included 128 consecutive PBC patients, all postmenopausal women aged in their 50s or 60s, without liver cirrhosis or fragility fracture at the time of PBC diagnosis. The prevalence of osteoporosis was significantly higher in the PBC group than in the control group (26% vs 10%, P = 0.015, the Fisher exact probability test). In most PBC patients (95%), the level of bone-specific alkaline phosphatase was above the normal range, indicating increased bone formation. On the other hand, the urine type I collagen-cross-linked N-telopeptide showed variable levels among our PBC patients, indicating unbalanced bone resorption. Advanced fibrosis was associated with low bone turnover. Lobular cholestasis, evaluated as aberrant keratin 7 expression in hepatocytes, showed significant negative correlations with bone formation and resorption, indicating low bone turnover. CONCLUSION: Our results show that, compared with healthy controls, even non-cirrhotic PBC patients have significantly higher risk of osteoporosis. Moreover, lobular cholestasis was associated with low bone turnover, suggesting this feature of PBC may itself cause secondary osteoporosis in PBC patients.


Assuntos
Colangite/complicações , Colangite/metabolismo , Colestase/complicações , Colestase/metabolismo , Osteoporose/epidemiologia , Osteoporose/etiologia , Idoso , Densidade Óssea , Remodelação Óssea , Reabsorção Óssea , Estudos de Casos e Controles , Colangite/patologia , Colestase/patologia , Feminino , Humanos , Cirrose Hepática , Pessoa de Meia-Idade , Osteogênese , Osteoporose/metabolismo , Pós-Menopausa , Prevalência , Pontuação de Propensão , Risco , Fatores de Risco
19.
Anal Sci ; 32(12): 1339-1345, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27941265

RESUMO

Solid-state NMR observations of low-gamma half-integer quadrupolar nuclei, 35Cl and 37Cl, were demonstrated using a 24 T hybrid magnet (1H resonance frequency of 1.02 GHz) comprised of the high-temperature (HTS) and low-temperature (LTS) superconductors, and compared with results using a 14.1 T standard NMR magnet. While at 24 T the linewidth is 1.7 times narrower than that at 14.1 T, the gain in the sensitivity is 7.0 times because of enhanced polarization, reduced linewidth, and the use of larger rotor. A simple theoretical model was used to rationalize the sensitivity enhancements. The ratio of 35Cl and 37Cl quadrupolar couplings agrees well with the ratio of quadrupolar moments, and no isotope-dependent chemical shift has been observed. In addition, the 3QMAS spectrum of 35Cl is shown to demonstrate the high sensitivity rendered by the 24 T spectrometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...