Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Microbiota Food Health ; 43(3): 227-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966044

RESUMO

Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented Brassica rapa L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented B. rapa L., and the IL-10 level in the supernatant was measured. Latilactobacillus curvatus K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.

3.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740521

RESUMO

AIMS: The aim of this study was to evaluate the antiobesity effects of heat-killed Lactiplantibacillus plantarum Shinshu N-07 (N-07) isolated from fermented Brassica rapa L. METHODS AND RESULTS: Male mice were divided into three groups (n = 10/group); normal diet, western diet (WD), or WD + N-07 (N-07) group and administered each diet for 56 days. The N-07 group showed significant suppression of body weight gain and epididymal fat, perirenal fat, and liver weights compared with the WD group. Higher levels of fecal total cholesterol, triglyceride (TG), and free fatty acid (FFA) were observed in the N-07 group than in the WD group. The mRNA expression of the cholesterol transporter ATP-binding cassette transporter G5 (ABCG5) was significantly increased in the small intestine of N-07-fed mice compared with WD-fed mice. Moreover, N-07 supplementation significantly increased the mRNA expression of ABCG5 and ABCG8 in Caco-2 cells. Furthermore, the TG- and FFA-removal ability of N-07 was confirmed to evaluate its soybean oil- and oleic acid-binding capacities in in vitro experiments. CONCLUSIONS: The antiobesity effects of N-07 might be due to its ability to promote lipid excretion by regulating cholesterol transporter expression and lipid-binding ability.


Assuntos
Dieta Ocidental , Obesidade , Animais , Masculino , Camundongos , Obesidade/metabolismo , Humanos , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fármacos Antiobesidade/farmacologia , Lactobacillus plantarum , Camundongos Obesos , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Probióticos , Células CACO-2 , Brassica rapa/química , Temperatura Alta , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
4.
Arch Biochem Biophys ; 752: 109879, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160699

RESUMO

We have previously shown the immunostimulatory effects by Nozawana (Brassica rapa L.). In this report, we determined the characteristics of Nozawana polysaccharide (NPS) and evaluated the immunomodulatory effects and anti-tumor activity of NPS mediated by macrophage activation. The molecular weight of NPS was determined by gel filtration chromatography with an average molecular weight of approximately 100.6 kDa. HPLC analysis showed that NPS contained glucose, galacturonic acid, galactose, and arabinose. NPS increased cytokine and nitric oxide (NO) production by macrophages in a Toll-like receptor (TLR)2 and TLR4-dependent manner. Furthermore, NPS induced apoptosis significantly against 4T1 murine breast cancer cells cultured in conditioned medium from NPS-treated macrophages through tumor necrosis factor-α. In tumor-bearing mouse model, tumor growth was significantly reduced in NPS-treated mice compared with control mice. These results support the potential use of NPS as an immunotherapeutic material found in health food products.


Assuntos
Brassica rapa , Receptor 2 Toll-Like , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Brassica rapa/metabolismo , Macrófagos/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ativação de Macrófagos
5.
Eur J Pharmacol ; 954: 175879, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406847

RESUMO

Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system caused by the excessive activation of T cells. Procyanidins are polyphenols that exhibit anti-inflammatory activity. Procyanidin B2 (PCB2) gallate [specifically, PCB2 3,3″-di-O-gallate (PCB2DG)] inhibits cytokine production in T cells by suppressing the acceleration of glycolysis. In this study, we determined the effect of PCB2DG on T cell-mediated autoimmune disease in vivo. We examined the immunosuppressive effects of PCB2DG using an experimental autoimmune encephalomyelitis (EAE) model, which is a classic animal model for MS. Our results indicated that the clinical score for EAE symptoms improved significantly following the oral administration of PCB2DG. This effect was associated with the suppression of T cell-mediated cytokines (e.g., IFN-γ, TNF-α, and IL-17) and infiltrating T cells into the spinal cord, which ameliorated spinal cord injury. In addition, spleen cell culture experiments revealed that the increase of T cell-mediated pro-inflammatory cytokines in EAE mice was significantly decreased following PCB2DG treatment. We further analyzed the glycolytic activity of spleen cells to identify the mechanism of the immunosuppressive effects of PCB2DG. The production of lactate and the expression of glycolytic enzymes and transporters were increased following EAE induction, but not in PCB2DG-treated EAE mice. Collectively, our results indicate that a dietary polyphenol, which has a unique structure, improves the onset of EAE symptoms and inhibits the excessive activation of T cells by influencing glycolysis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proantocianidinas , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Linfócitos T , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Citocinas/metabolismo , Linfócitos T CD4-Positivos , Glicólise , Administração Oral , Camundongos Endogâmicos C57BL
6.
Int Immunopharmacol ; 121: 110444, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295030

RESUMO

The excessive activation of abnormal T helper 17 (Th17) cells and dendritic cells (DCs) in the dermis and epidermis causes severe inflammation of the skin. Toll-like receptor 7 (TLR7)-located in the endosomes of DCs-recognizes nucleic acids from pathogens as well as imiquimod (IMQ), which plays a crucial role in the pathogenesis of skin inflammation. Procyanidin B2 3,3''-di-O-gallate (PCB2DG), a polyphenol, has been reported to suppress the excessive production of proinflammatory cytokines from T cells. The aim of this study was to demonstrate the inhibitory effect of PCB2DG on skin inflammation and TLR7 signaling in DCs. In vivo studies showed that the clinical symptoms of dermatitis were markedly improved by the oral administration of PCB2DG in mouse dermatitis model caused by IMQ application, accompanied by the suppression of excessive cytokine secretion in the inflamed skin and spleen. In vitro, PCB2DG significantly decreased cytokine production in TLR7- or TLR9 ligand-stimulated bone marrow-derived dendritic cells (BMDCs), suggesting that PCB2DG suppresses endosomal toll-like receptors (TLR) signaling in DCs. The activity of endosomal TLRs depends on endosomal acidification, which was significantly inhibited by PCB2DG in BMDCs. The addition of cAMP, an accelerator of endosomal acidification, abrogated the inhibitory effect of cytokine production by PCB2DG. These results provide a new insight into developing functional foods, including PCB2DG, to improve the symptoms of skin inflammation through the suppression of TLR7 signaling in DCs.


Assuntos
Dermatite , Receptor 7 Toll-Like , Animais , Camundongos , Imiquimode/farmacologia , Células Dendríticas , Citocinas/farmacologia , Inflamação , Endossomos , Concentração de Íons de Hidrogênio
7.
Biosci Biotechnol Biochem ; 87(10): 1205-1211, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37355784

RESUMO

Obesity, a chronic disorder caused by excessive energy intake leading to fat accumulation in adipose tissue, increases the risk of severe diseases. Brassica rapa L. is known as a traditional vegetable in the Nagano area of Japan. C57BL/6 mice were randomly assigned to three groups, with different diets as follows: a normal diet, a Western diet (WD), and a WD plus B. rapa L. powder (BP) in a 56-day experiment. Brassica rapa L. supplementation reduced the body weight gain and lipid accumulation of mice significantly. The BP group also had higher fecal bile acid, total cholesterol, and triglyceride excretion levels compared with those in the other groups. The antiobesity effects of B. rapa L. were due to its binding with cholesterol and fat, and possibly enhancing the bile acid excretion and modulating gut microbiota, suggesting that B. rapa L. could be a functional vegetable with potential uses in targeting obesity.


Assuntos
Brassica rapa , Camundongos , Animais , Brassica rapa/metabolismo , Dieta Ocidental , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Obesidade/metabolismo , Colesterol/metabolismo , Tecido Adiposo/metabolismo , Verduras , Ácidos e Sais Biliares/metabolismo
8.
Anim Biosci ; 36(7): 1143-1149, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36915919

RESUMO

OBJECTIVE: We investigated the effects of outdoor access for 1 h per day on the animal welfare (AW) of tethered cows, in terms of lying and sleeping postures, and immune function. METHODS: A total of five dry cows were tethered all day indoors (tethering) for 30 days and then tethered indoors with 1 h daily outdoor access (ODA-1h) for 30 days. To analyze the effects of ODA-1h, we calculated the total duration and bout frequency per day, and bout duration of lying and sleeping postures during the last five days of each treatment period. We also analyzed the populations of T cells, B cells, and NK cells in peripheral blood mononuclear cells (PBMC) by fluorescence-activated cell sorting and determined the concanavalin A (Con A) -induced proliferation rate of T cells. RESULTS: The mean total time per day of lying during the ODA-1h treatment was significantly shorter than that during the tethering treatment (p<0.001). The Con A-induced proliferation rate of T cells during the ODA-1h treatment was significantly higher than that during the tethering treatment (p = 0.007). The proportion of NK cells in PBMC during the ODA-1h treatment tended to be higher than that during the tethering treatment (p = 0.062). CONCLUSION: Although ODA-1h may decrease lying time, it increases the available space for tethered cows towards that typically found in grazing and free barn feeding systems. This increased available space promotes the expression of normal behaviors such as walking and social behaviors except lying and may also improve the immune function of tethered dry cows, thereby improving their overall welfare.

9.
Biosci Biotechnol Biochem ; 87(5): 465-472, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36796794

RESUMO

Dietary foods have functions that can prevent disease and improve immune function, eg. increasing resistance to infection and preventing allergies. Brassica rapa L., known as Nozawana in Japan, is a cruciferous plant and a traditional vegetable of the Shinshu area. Nozawana leaves and stalks are processed mainly into pickled products called Nozawana-zuke. However, it is unclear whether Nozawana exerts beneficial effects on immune function. In this review, we discuss the evidence we have accumulated, which indicate Nozawana has effects on immunomodulation and gut microbiota. We have shown that Nozawana exerts an immunostimulatory effect by enhancing interferon-gamma production and natural killer activity. During the fermentation of Nozawana, the number of lactic acid bacteria increases and cytokine production by spleen cells is enhanced. Moreover, the consumption of Nozawana pickle was shown to modulate gut microbiota and improve the intestinal environment. Thus, Nozawana could be a promising food for improving human health.


Assuntos
Brassica rapa , Microbioma Gastrointestinal , Humanos , Baço , Dieta , Imunidade
10.
Int Immunopharmacol ; 115: 109617, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566519

RESUMO

Excessive activation of CD4+ T cells increases cytokine production substantially and induces immune-mediated diseases. Procyanidins are polyphenols with anti-inflammatory properties. Procyanidin B2 (PCB2) gallate [specifically, PCB2 3,3''-di-O-gallate (PCB2DG)] inhibits cytokine production through the suppression of glycolysis via mammalian target of rapamycin (mTOR) in T cells. Several amino acids play critical roles in T cell activation, especially glutamine, which is important in mTOR signaling and interferon-γ (IFN-γ) production in CD4+ T cells. However, the mechanisms underlying the effects of PCB2DG, including its interaction partners, have yet to be clarified. In the present study, the mechanisms underlying the inhibitory effect of PCB2DG on IFN-γ through glutamine metabolism regulation were investigated. We found that PCB2DG treatment reduced intracellular glutamine levels in CD4+ T cells, whereas the addition of glutamine abrogated the inhibitory effects of PCB2DG on IFN-γ production. The PCB2DG-induced reduction in intracellular glutamine accumulation led to the upregulated expression of activating transcription factor 4, which was induced by the cytoprotective signaling pathway in the amino acid response. In addition, the mRNA and protein expression levels of alanine serine cysteine transporter 2 (ASCT2), a major glutamine transporter in CD4+ T cells, were not altered by PCB2DG treatment. Further analysis using a target identification strategy revealed that PCB2DG binds to ASCT2, suggesting that PCB2DG interacts directly with this major glutamine transporter to inhibit glutamine influx. Overall, this study indicates that ASCT2 is a novel target protein of a dietary polyphenol and provides new insights into the mechanism underlying the immunomodulatory effects of polyphenols.


Assuntos
Glutamina , Proantocianidinas , Animais , Camundongos , Linfócitos T/metabolismo , Proantocianidinas/farmacologia , Alanina , Cisteína , Serina , Aminoácidos , Serina-Treonina Quinases TOR/metabolismo , Interferon gama/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Mamíferos
11.
Mech Ageing Dev ; 206: 111710, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868542

RESUMO

Aging is associated with a decrease in the function of the immune system, a phenomenon known as immunosenescence, which results in reduced resistance to infection. Caloric restriction (CR) is known to prolong lifespan and to regulate immune function. However, whether and how CR affects immunosenescence remains unclear. Here, we evaluated the effect of long- and short-term CR on immunosenescence by subjecting wild-type mice to CR between 6 and 18 months of age or between 17 and 18 months of age, respectively. Compared with a normal diet or short-term CR, long-term CR induced marked or complete attenuation of age-related decreases in the frequency of spleen NK cells and NKT cells; naïve CD4+ and CD8+ T cells; and cytokine- and granzyme B-secreting T cells. In contrast, both long- and short-term CR significantly suppressed age-related upregulation of the T cell exhaustion markers PD-1, Tim-3, and KLRG1, as well as the transcription factors NR4A1 and TOX, which regulate the expression of genes associated with the T cell exhaustion phenotype. These results suggest that CR might suppress age-associated immunosenescence by regulating the expression of transcription factors and target genes that control T cell exhaustion.


Assuntos
Imunossenescência , Envelhecimento/fisiologia , Animais , Linfócitos T CD8-Positivos , Restrição Calórica , Camundongos , Fatores de Transcrição
12.
Microorganisms ; 9(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835465

RESUMO

The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals, including humans. We previously revealed through a whole-brain transcriptome analysis that infection with T. gondii in mice causes immune response-associated genes to be upregulated, for instance, chemokines and chemokine receptors such as CXC chemokine receptor 3 (CXCR3) and its ligand CXC chemokine ligand 10 (CXCL10). Here, we describe the effect of CXCR3 on responses against T. gondii infection in the mouse brain. In vivo assays using CXCR3-deficient mice showed that the absence of CXCR3 delayed the normal recovery of body weight and increased the brain parasite burden, suggesting that CXCR3 plays a role in the control of pathology in the brain, the site where chronic infection occurs. Therefore, to further analyze the function of CXCR3 in the brain, we profiled the gene expression patterns of primary astrocytes and microglia by RNA sequencing and subsequent analyses. CXCR3 deficiency impaired the normal upregulation of immune-related genes during T. gondii infection, in astrocytes and microglia alike. Collectively, our results suggest that the immune-related genes upregulated by CXCR3 perform a particular role in controlling pathology when the host is chronically infected with T. gondii in the brain.

13.
Nutrients ; 13(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071486

RESUMO

Our previous studies have elucidated that oral administration of Brassica rapa L. extract, known as Nozawana in Japan, alters immune responses and gut microbiota composition, increasing the numbers of butyrate-producing bacteria. Therefore, further investigation would help elucidate the mechanism attributable for the changes and health-promoting effects observed after B rapa L. extract ingestion. To reveal the modulation effects of fermented B. rapa L. on immune function and intestinal bacterial community structure, we conducted an intervention study with healthy volunteers followed by a mouse feeding study. The pilot intervention study was conducted for healthy volunteers aged 40-64 years under the hypothesis that the number of subjects exhibiting any change in gut microbiota in response to fermented B. rapa L. consumption may be limited. In total, 20 volunteers consumed 30 g of fermented B. rapa L. per day for 4 weeks. The fecal bacterial community composition of the volunteers was characterized using terminal-restriction fragment length polymorphism patterning followed by clustering analysis. To evaluate the detailed changes in the immune responses and the gut bacterial composition, assessed by high-throughput sequencing, we fed healthy mice with freeze-dried, fermented B. rapa L. for 2 weeks. The fecal bacterial community composition of the volunteers before the intervention was divided into three clades. Regardless of the clade, the defecation frequency significantly increased during the intervention weeks compared with that before the intervention. However, this clustering detected a specific increase of Prevotella in one cluster (low to zero Prevotella and high occupation of Clostridium at clusters IV and XIVa) post-ingestion. The cytokine production of spleen cells significantly increased due to feeding fermented B. rapa L. to the mice. This supplementary in vivo trial provided comparable results to the volunteer study regarding the effects of ingestion of the material given the compositional change complying with that of dietary fiber, particularly in the increase of genera Prevotella, Lachnospira, and genera in the Ruminococcaceae family, and the increase in daily defecation amount during 2 weeks of administration. We conclude that feeding fermented B. rapa L. may be responsible for the observed modulation in gut microbiota to increase fiber-degrading bacteria and butyrate-producing bacteria which may be relevant to the improvement in bowel function such as defecation frequency.


Assuntos
Brassica rapa , Defecação/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adulto , Animais , Brassica rapa/química , Fezes/microbiologia , Feminino , Fermentação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Prebióticos
14.
Biomed Pharmacother ; 137: 111346, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556876

RESUMO

Abnormal T helper 17 (Th17) responses promote inflammation and cause inflammatory diseases. Natural components that modulate Th17 functions can be effective for the amelioration of inflammatory diseases. Procyanidin B2 3,3''-di-O-gallate (PCB2DG) contained in grape seeds markedly suppressed interleukin (IL)-17 production from spleen cells but not CD4+ T cells. The aim of this study was to elucidate the mechanisms by which PCB2DG suppresses IL-17. Our results showed that PCB2DG suppressed the production of IL-17, tumor necrosis factor (TNF)-α, IL-1ß, and IL-6 with the suppression of transcription factors expression. In addition, we revealed that TNF-α and IL-1ß were required to induce IL-17 production in this experimental condition, and PCB2DG suppressed these cytokines from dendritic cells (DCs). Furthermore, CD4-DC co-culture experiments showed that the production of IL-17, TNF-α, and IL-1ß was markedly inhibited in co-cultures of PCB2DG-pretreated CD4+ T cells and DCs. These results suggested that PCB2DG first modulated TNF-α production by CD4+ T cells and then suppressed IL-1ß secretion from DCs, resulting in decreased IL-17 production. Thus, PCB2DG can control the cytokine network associated with Th17 cells, providing a novel mechanism underlying the immunosuppressive effects of polyphenols.


Assuntos
Biflavonoides/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Catequina/farmacologia , Citocinas/biossíntese , Células Dendríticas/efeitos dos fármacos , Imunossupressores/farmacologia , Interleucina-17/biossíntese , Proantocianidinas/farmacologia , Baço/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Interleucina-17/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Baço/metabolismo , Células Th17/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores
15.
Biosci Biotechnol Biochem ; 85(3): 656-665, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33589925

RESUMO

Macrophages can initiate innate immune responses against microbes and cancer. The aim of this study was to elucidate the effects of Brassica rapa L. on macrophages. The production of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon-γ induced by the insoluble fraction of B. rapa L. was decreased in macrophage-depleted spleen cells compared with controls. The insoluble fraction of B. rapa L. induced expression of H-2Kb, I-Ab, CD40, and CD86, production of cytokines and nitric oxide, and phagocytic activity in RAW264 cells. After treatment with the insoluble fraction, IL-6 and TNF-α production was significantly decreased by anti-Toll-like receptor (TLR)2 mAb or polymyxin B compared with the control. Furthermore, insoluble fraction-mediated cytokine production was significantly lower in peritoneal macrophages from TLR2-/- and TLR4-/- mice compared with wild-type mice. These results suggest that B. rapa L. is a potentially effective immunomodulator for activating macrophages to prevent infections.


Assuntos
Brassica rapa/fisiologia , Ativação de Macrófagos/fisiologia , Receptores Toll-Like/fisiologia , Animais , Antígenos CD/biossíntese , Citocinas/biossíntese , Interleucina-6/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Células RAW 264.7 , Fator de Necrose Tumoral alfa/biossíntese
16.
Food Chem (Oxf) ; 2: 100019, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415626

RESUMO

Metabolomic characterization of a lactic-fermented pickle of nozawana (Brassica rapa L. var. hakabura) was conducted to evaluate the effects of different starter culture strains on the chemical profiles. We compared the profiles of water-soluble and volatile compounds obtained by non-targeted nuclear magnetic resonance and solid-phase microextraction gas chromatography/mass spectrometry analyses. Principal component analyses indicated that the fermented samples differed significantly in terms of the levels of various compounds, including taste- and aroma-active components, such as water-soluble residual sugars, organic acids, mannitol, ethanol, dihydroxyacetone, ornithine, γ-aminobutyric acid, choline, volatile isothiocyanates, 3,4-epithiobutyl cyanide, 2,3-butanedione, acetoin, ethyl acetate, dimethyl trisulfide, and S-methyl thioacetate. Fermentation with a Latilactobacillus curvatus culture was associated with a unique metabolite profile characterized by higher levels of isothiocyanates and hexanoic acid and lower levels of lactic acid, acetic acid, acetoin, and 2,3-butanedione. These variations in the chemical profile might be associated with different qualities in fermented nozawana pickle products.

17.
Front Immunol ; 11: 1709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849602

RESUMO

Toxoplasma gondii infects almost all warm-blooded animals, including humans, leading to both cellular and humoral immune responses in the host. The virulence of T. gondii is strain specific and is defined by secreted effector proteins that disturb host immunity. Here, we focus on nuclear factor-kappa B (NFκB) signaling, which regulates the induction of T-helper type 1 immunity. A luciferase assay for screening effector proteins, including ROPs and GRAs that have biological activity against an NFκB-dependent reporter plasmid, found that overexpression of GRA7, 14, and 15 of a type II strain resulted in a strong activity. Thus, our study was aimed at understanding the involvement of NFκB in the pathogenesis of toxoplasmosis through a comparative analysis of these three molecules. We found that GRA7 and GRA14 were partially involved in the activation of NFκB, whereas GRA15 was essential for NFκB activation. The deletion of GRA7, GRA14, and GRA15 in the type II Prugniaud (Pru) strain resulted in a defect in the nuclear translocation of RelA. Cells infected with the PruΔgra15 parasite showed reduced phosphorylation of inhibitor-κBα. GRA7, GRA14, and GRA15 deficiency decreased the levels of interleukin-6 in RAW246.7 cells, and RNA-seq analysis revealed that GRA7, GRA14, and GRA15 deficiency predominantly resulted in downregulation of gene expression mediated by NFκB. The virulence of all mutant strains increased, but PruΔgra14 only showed a slight increase in virulence. However, the intra-footpad injection of the highly-virulent type I RHΔgra14 parasites in mice resulted in increased virulence. This study shows that GRA7, 14, and 15-induced host immunity via NFκB limits parasite expansion.


Assuntos
Antígenos de Protozoários/imunologia , Interações Hospedeiro-Parasita/imunologia , NF-kappa B/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Toxoplasma/imunologia , Virulência , Fatores de Virulência/imunologia
18.
Biochem Pharmacol ; 177: 113952, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251675

RESUMO

Procyanidins are polyphenols with antioxidant, anti-obesity, and anti-inflammatory properties. Procyanidin B2 (PCB2) gallate; specifically, PCB2 3,3″-di-O-gallate (PCB2DG), inhibits cytokine production in T cells. However, the molecular interactions and partners of PCB2DG underlying this suppression of cytokine production are unclear. The present study aimed to elucidate mechanisms underlying regulation of tumor necrosis factor (TNF)-α production by PCB2DG. We found that production of TNF-α and glycolytic activity in activated CD4+ T cells were suppressed by PCB2DG treatment. The inhibition of TNF-α production was found to be mediated by mammalian target of rapamycin (mTOR) and hypoxia inducible factor 1 (HIF-1) pathway, as PCB2DG suppressed the expression of HIF-1α, p-mTOR, and p-p70S6K (a downstream of the mTOR complex, mTORC1). Moreover, suppression of TNF-α production was mediated by regulation of the glycolytic enzyme lactate dehydrogenase at the posttranscriptional level. These results suggest that PCB2DG regulates TNF-α production by inhibiting glycolytic activity via the mTOR-HIF-1 pathway.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Glicólise/efeitos dos fármacos , Fator 1 Induzível por Hipóxia/metabolismo , Proantocianidinas/farmacologia , Linfócitos T/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Biflavonoides/síntese química , Biflavonoides/química , Western Blotting , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Catequina/síntese química , Catequina/química , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , L-Lactato Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Proantocianidinas/síntese química , Proantocianidinas/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/genética
19.
Gene ; 725: 144191, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31654705

RESUMO

Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decrease mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. However, the detailed mechanisms of immunomodulation by CR remain unclear. In this study, we established a mouse model for CR and analyzed the changes of immune cells in these mice. The CR mice fed a calorie-restricted diet for 4 weeks had lower body weight and fat mass compared with control mice. The proportions of CD4+, CD8+, and naïve CD4+ T cells in spleen cells from CR mice were higher than those in of control mice. Additionally, the proportion of CD8+ T cells was significantly decreased and the mRNA expression of proinflammatory cytokines in the colon of CR mice was significantly decreased compared with those of control mice. To determine the effect of CR on microRNA (miRNA) expression, serum and tissues were collected from mice and the expression level of miRNA was analyzed by real-time RT-PCR. As a result, the expressions of miR-16-5p, miR-196b-5p, and miR-218-5p in serum from CR mice were higher than those in control mice. The expression of miR-16-5p increased in the spleen, thymus, colon, and stomach of CR mice compared with expression in control mice. Furthermore, RAW264 cells transfected with a miR-16-5p mimic significantly decreased the mRNA expression of IL-1ß, IL-6, and TNF-α under LPS stimulation. These results suggested that miR-16-5p might be a critical factor involving the anti-inflammatory effects of calorie-restricted feeding.


Assuntos
Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Envelhecimento/metabolismo , Animais , Restrição Calórica/métodos , Citocinas/genética , Citocinas/metabolismo , Dietoterapia , Inflamação/metabolismo , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Células RAW 264.7 , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
20.
BMC Genomics ; 20(1): 705, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506064

RESUMO

BACKGROUND: Infection with Toxoplasma gondii is thought to damage the brain and be a risk factor for neurological and psychotic disorders. The immune response-participating chemokine system has recently been considered vital for brain cell signaling and neural functioning. Here, we investigated the effect of the deficiency of C-C chemokine receptor 5 (CCR5), which is previously reported to be associated with T. gondii infection, on gene expression in the brain during T. gondii infection and the relationship between CCR5 and the inflammatory response against T. gondii infection in the brain. RESULTS: We performed a genome-wide comprehensive analysis of brain cells from wild-type and CCR5-deficient mice. Mouse primary brain cells infected with T. gondii were subjected to RNA sequencing. The expression levels of some genes, especially in astrocytes and microglia, were altered by CCR5-deficiency during T. gondii infection, and the gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed an enhanced immune response in the brain cells. The expression levels of genes which were highly differentially expressed in vitro were also investigated in the mouse brains during the T. gondii infections. Among the genes tested, only Saa3 (serum amyloid A3) showed partly CCR5-dependent upregulation during the acute infection phase. However, analysis of the subacute phase showed that in addition to Saa3, Hmox1 may also contribute to the protection and/or pathology partly via the CCR5 pathway. CONCLUSIONS: Our results indicate that CCR5 is involved in T. gondii infection in the brain where it contributes to inflammatory responses and parasite elimination. We suggest that the inflammatory response by glial cells through CCR5 might be associated with neurological injury during T. gondii infection to some extent.


Assuntos
Encéfalo/citologia , Encéfalo/parasitologia , Perfilação da Expressão Gênica , Receptores CCR5/deficiência , Toxoplasma/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Encéfalo/metabolismo , Técnicas de Inativação de Genes , Camundongos , Microglia/metabolismo , Microglia/parasitologia , Receptores CCR5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...