Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13714-13725, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38741386

RESUMO

The activity, selectivity, and lifetime of nanocatalysts critically depend on parameters such as their morphology, support, chemical composition, and oxidation state. Thus, correlating these parameters with their final catalytic properties is essential. However, heterogeneity across nanoparticles (NPs) is generally expected. Moreover, their nature can also change during catalytic reactions. Therefore, investigating these catalysts in situ at the single-particle level provides insights into how these tunable parameters affect their efficiency. To unravel this question, we applied spectro-microscopy to investigate the thermal reduction of SiO2-supported copper oxide NPs in ultrahigh vacuum. Copper was selected since its oxidation state and morphological transformations strongly impact the product selectivity of many catalytic reactions. Here, the evolution of the NPs' chemical state was monitored in situ during annealing and correlated with their morphology in situ. A reaction front was observed during the reduction of CuO to Cu2O. From the temperature dependence of this front, the activation energy was extracted. Two parameters were found to strongly influence the NP reduction: the initial nanoparticle size and the chemical state of the SiO2. substrate. The CuOx reduction was found to be completed first on smaller NPs and was also favored over partially reduced SiOx regions that resulted from X-ray beam irradiation. This methodology with single-particle level spectro-microscopy resolution provides a way of isolating the influence of diverse morphologic, electronic, and chemical influences on a chemical reaction. The knowledge gained is crucial for the future design of more complex multimetallic catalytic systems.

2.
Nanoscale ; 15(31): 13062-13075, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498343

RESUMO

Probing of the free surface ferroelectric properties of thin polar films can be achieved either by estimating the band bending variance under the top-most layer or by studying the extent of the extrinsic charge accumulated outside the surface. Photoemitted or incoming low-energy electrons can be used to characterize locally both properties in a spectromicroscopic approach. Thin ferroelectric lead zirco-titanate (PZT) is investigated by combining low energy/mirror electron microscopy (LEEM/MEM) with photoemission electron microscopy (PEEM) and high-resolution photoelectron spectroscopy (XPS). Significant extrinsic negative compensation charge is proven to accumulate on the surface of the outward polarized thin film, indicated by high MEM-LEEM transition values, up to 15.3 eV, and is correlated with the surface electrostatic potential, which can be partially screened either by electrons interacting with the sample or by soft X-rays through the ejection of secondary electrons and generation of positive charge under the surface. A radiation-induced surface charge compensation effect is observed. The study indicates that air-exposed high quality ferroelectric thin films show large negative surface potentials, determined locally on the surface, which are nevertheless sensitive to beam damage and molecular desorption. These values represent a confirmation of previously estimated surface potential energy values determined from the LEED data on clean surfaces.

3.
Ultramicroscopy ; 250: 113755, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37216832

RESUMO

We have used low-energy electron microscopy (LEEM), micro-illumination low-energy electron diffraction (µLEED) supported by ab initio calculations, and X-ray absorption spectroscopy (XAS) to investigate in-situ and in real-time the structural properties of Sm2O3 deposits grown on Ru(0001), a rare-earth metal oxide model catalyst. Our results show that samarium oxide grows in a hexagonal A-Sm2O3 phase on Ru(0001), exhibiting a (0001) oriented-top facet and (113) side facets. Upon annealing, a structural transition from the hexagonal to cubic phase occurs, in which the Sm cations exhibit the +3 oxidation state. The unexpected initial growth in the A-Sm2O3 hexagonal phase and its gradual transition to a mixture with cubic C-Sm2O3 showcases the complexity of the system and the critical role of the substrate in the stabilization of the hexagonal phase, which was previously reported only at high pressures and temperatures for bulk samaria. Besides, these results highlight the potential interactions that Sm could have with other catalytic compounds with respect to the here gathered insights on the preparation conditions and the specific compounds with which it interacts.

4.
ACS Catal ; 12(19): 11974-11983, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36249872

RESUMO

Spatio-temporal nonuniformities in H2 oxidation on individual Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10-6 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations.

5.
ACS Appl Mater Interfaces ; 14(43): 48609-48618, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36255411

RESUMO

Ultrathin silica films are considered suitable two-dimensional model systems for the study of fundamental chemical and physical properties of all-silica zeolites and their derivatives, as well as novel supports for the stabilization of single atoms. In the present work, we report the creation of a new model catalytic support based on the surface functionalization of different silica bilayer (BL) polymorphs with well-defined atomic structures. The functionalization is carried out by means of in situ H-plasma treatments at room temperature. Low energy electron diffraction and microscopy data indicate that the atomic structure of the films remains unchanged upon treatment. Comparing the experimental results (photoemission and infrared absorption spectra) with density functional theory simulations shows that H2 is added via the heterolytic dissociation of an interlayer Si-O-Si siloxane bond and the subsequent formation of a hydroxyl and a hydride group in the top and bottom layers of the silica film, respectively. Functionalization of the silica films constitutes the first step into the development of a new type of model system of single-atom catalysts where metal atoms with different affinities for the functional groups can be anchored in the SiO2 matrix in well-established positions. In this way, synergistic and confinement effects between the active centers can be studied in a controlled manner.

6.
Chem Sci ; 12(42): 14241-14253, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760210

RESUMO

Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate's orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments.

7.
ACS Appl Mater Interfaces ; 13(31): 37510-37516, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328712

RESUMO

The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report µm scale, few-layer graphene structures formed at moderate temperatures (600-700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics.

8.
J Am Chem Soc ; 143(23): 8780-8790, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096299

RESUMO

We offer a comprehensive approach to determine how physical confinement can affect the water formation reaction. By using free-standing crystalline SiO2 bilayer supported on Ru(0001) as a model system, we studied the water formation reaction under confinement in situ and in real time. Low-energy electron microscopy reveals that the reaction proceeds via the formation of reaction fronts propagating across the Ru(0001) surface. The Arrhenius analyses of the front velocity yield apparent activation energies (Eaapp) of 0.32 eV for the confined and 0.59 eV for the nonconfined reaction. DFT simulations indicate that the rate-determining step remains unchanged upon confinement, therefore ruling out the widely accepted transition state effect. Additionally, H2O accumulation cannot explain the change in Eaapp for the confined cases studied because its concentration remains low. Instead, numerical simulations of the proposed kinetic model suggest that the H2 adsorption process plays a decisive role in reproducing the Arrhenius plots.

9.
ACS Appl Mater Interfaces ; 12(22): 25444-25452, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32388975

RESUMO

Establishing the rather complex correlation between the structure and the charge transfer in organic-organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details. Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes. As for Buckminsterfullerene (C60), the growth of its fluorinated derivative C60F48 is influenced by the thickness and crystallinity of the PEN buffer layer, but the behavior is markedly different. We provide a microscopic description of the C60F48/PEN interface formation and analyze the consequences in the electronic properties of the final heterostructure. For just one single layer of PEN, a laterally complete but noncompact C60F48/PEN interface is created, importantly affecting the surface work function. Nonetheless, from the very beginning of the second layer formation, the presence of epitaxial and nonepitaxial PEN domains dramatically influences the growth dynamics and extremely well packed two-dimensional C60F48 islands develop. Insightful elemental maps of the C60F48/PEN surface spatially resolve the nonuniform distribution of the dopant molecules, which leads to a heterogeneous work function landscape.

10.
ACS Appl Mater Interfaces ; 12(20): 23595-23605, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32314585

RESUMO

Metal alloy catalysts can develop complex surface structures when exposed to reactive atmospheres. The structures of the resulting surfaces have intricate relationships with a myriad of factors, such as the affinity of the individual alloying elements to the components of the gas atmosphere and the bond strengths of the multitude of low-energy surface compounds that can be formed. Identifying the atomic structure of such surfaces is a prerequisite for establishing structure-property relationships, as well as for modeling such catalysts in ab initio calculations. Here, we show that an alloy, consisting of an oxophilic metal (Cu) diluted into a noble metal (Ag), forms a meta-stable two-dimensional oxide monolayer, when the alloy is subjected to oxidative reaction conditions. The presence of this oxide is correlated with selectivity in the corresponding test reaction of ethylene epoxidation. In the present study, using a combination of in situ, ex situ, and theoretical methods (NAP-XPS, XPEEM, LEED, and DFT), we determine the structure to be a two-dimensional analogue of Cu2O, resembling a single lattice plane of Cu2O. The overlayer holds a pseudo-epitaxial relationship with the underlying noble metal. Spectroscopic evidence shows that the oxide's electronic structure is qualitatively distinct from its three-dimensional counterpart, and because of weak electronic coupling with the underlying noble metal, it exhibits metallic properties. These findings provide precise details of this peculiar structure and valuable insights into how alloying can enhance catalytic properties.

11.
ChemSusChem ; 12(19): 4432-4441, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31415122

RESUMO

As a new class of sustainable carbon material, "carbon dots" is an umbrella term covering many types of materials. Herein, a broad range of techniques was used to develop the understanding of hydrothermally synthesized carbon dots, and it is shown how fine-tuning the structural features by simple reduction/oxidation reactions can drastically affect their excited-state properties. Structural and spectroscopic studies found that photoluminescence originates from direct excitation of localized fluorophores involving oxygen functional groups, whereas excitation at graphene-like features leads to ultrafast phonon-assisted relaxation and largely quenches the fluorescent quantum yields. This is arguably the first study to identify the dynamics of photoluminescence including Stokes shift and allow the relaxation pathways in these carbon dots to be fully resolved. This comprehensive investigation sheds light on how understanding the excited-state relaxation processes in different carbon structures is crucial for tuning the optical properties for any potential commercial applications.

12.
Phys Chem Chem Phys ; 20(21): 14652-14663, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29770415

RESUMO

The formation of separate phases in crystalline materials is promoted by doping with elements with different valences and ionic radii. Control of the formation of separate phases in multiferroics is extremely important for their magnetic, ferroelectric and elastic properties, which are relevant for multifunctional applications. The ordering of dopants and incipient phase separation were studied in lead titanate-based multiferroics with the formula (Pb0.88Nd0.08)(Ti0.98-xFexMn0.02)O3 (x = 0.00, 0.03, 0.04, 0.05) by means of a combination of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy. We found that Fe ions are substituted as Fe3+ at Ti sites and preferentially exhibit pentahedral coordination, whereas Ti ions have coexisting valences of Ti4+/Ti3+. Fe3+ ions are preferentially ordered in clusters, and there exists a transition temperature TC1, below which phase separation occurs between a tetragonal phase T1 free of magnetic clusters and a cubic phase, and a lower transition temperature TC2, below which the cubic phase rich in magnetic clusters is transformed into a tetragonal phase T2. The phase separation persists at the nanoscale level down to room temperature and is visible in HRTEM images as a mixing of nanodomains with different tetragonality ratios. This phase separation was observed over the whole studied concentration range of xFe values. It occurs progressively with the value of xFe, and the transition temperature TC2 decreases with the concentration from about 620 K (xFe = 0.03) to about 600 K (xFe = 0.05), while TC1 remains nearly constant.

13.
ACS Appl Mater Interfaces ; 10(16): 14132-14144, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29595950

RESUMO

Controlling the semiconductor-to-metal transition temperature in epitaxial VO2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO2 epitaxial thin films grown on TiO2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V4+-V4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO2/TiO2 multilayer structures.

14.
Nanoscale ; 9(31): 11055-11067, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28702656

RESUMO

The stability of thin films of lead zirco-titanate (PZT) under intense soft X-ray beams is investigated by time-resolved photoelectron spectromicroscopy with a lateral resolution below 1 micrometer. Surface dissociation is observed when samples are irradiated with intense (5 × 1023 photons per s per m2) soft X-rays, with promotion of reduced lead on the surface. On areas exhibiting outwards polarization (P(+)), the reduced lead is formed at the expense of P(+)-PZT. On areas presenting co-existing P(+) states with areas without out-of-plane polarization (P(0)), the reduced lead is formed at the expense of the P(0)-PZT component, while the P(+)-PZT remains constant. The main dissociation mechanism was found to be triggered by 'hot' electrons in the conduction band, with energies exceeding the surface dissociation energies. Dissociation occurs basically when the electron affinity is larger than the dissociation energy of PbO (for P(+) areas) or PbO- (for P(0) areas). Such mechanisms may be adapted for dissociation of other molecules on surfaces of ferroelectric thin films or for quantifying the stability of ferroelectric surfaces interacting with other radiation, with applications in the fields of photocatalysis or photovoltaic devices.

15.
Chem Commun (Camb) ; 52(88): 12956-12959, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27752663

RESUMO

We report the applicability of a hybrid system comprising a La3+-based catalyst and an Au/TiO2 photocatalyst in the decomposition of chemical weapons. This system is able to perform complete degradation of soman, sarin and VX in less than 1 minute under low basic conditions and visible light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...