Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 752: 142190, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207513

RESUMO

Mangrove, seagrass, and coral habitats often lie adjacent to each other in the tropics and subtropics. Lateral carbon fluxes and their consecutive effects on CO2 dynamics and air-water fluxes along the ecosystem continuum are often overlooked. We measured the partial pressure of CO2 in water and associated biogeochemical parameters with a high temporal resolution and estimated air-water CO2 fluxes along the ecosystem continuum. Their lateral fluxes were estimated by using a biogeochemical mass-balance model. The results showed that the waters surrounding mangrove, seagrass, and coral habitats acted as a strong, moderate, and weak source of atmospheric CO2, respectively. The mangrove zone acted as a net source for TAlk, DIC, and DOC, but as a net sink for POC. The contribution of riverine and mangrove-derived OM was substantially high in mangrove sediment, indicating that net transport of POC towards the coastal sea was suppressed by the sediment trapping function of mangroves. The seagrass zone acted as a net source of all carbon forms and TAlk, whereas the coral zone acted as a net sink of TAlk, DIC, and DOC. The lateral transport of carbon from mangroves and rivers offset atmospheric CO2 uptake in the seagrass zone. DOC degradation might increase DIC, and other biogeochemical processes facilitate the functioning of the coral zone as a DOC sink. However, as a result of DIC uptake by autotrophs, mainly in the coral zone, the whole ecosystem continuum was a net sink of DIC and atmospheric CO2 evasion was lowered. We conclude that lateral transport of riverine and mangrove-derived DIC, TAlk, and DOC affect CO2 dynamics and air-water fluxes in seagrass and coral ecosystems. Thus, studies of lateral carbon fluxes at local and regional scales can improve global carbon budget estimates.


Assuntos
Antozoários , Ecossistema , Animais , Carbono , Dióxido de Carbono , Áreas Alagadas
2.
PeerJ ; 6: e6234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30671289

RESUMO

Wetlands, tidal flats, seaweed beds, and coral reefs are valuable not only as habitats for many species, but also as places where people interact with the sea. Unfortunately, these areas have declined in recent years, so environmental improvement projects to conserve and restore them are being carried out across the world. In this study, we propose a method for quantifying ecosystem services, that is, useful for the proper maintenance and management of artificial tidal flats, a type of environmental improvement project. With this method, a conceptual model of the relationship between each service and related environmental factors in natural and social systems was created, and the relationships between services and environmental factors were clarified. The state of the environmental factors affecting each service was quantified, and the state of those factors was reflected in the evaluation value of the service. As a result, the method can identify which environmental factors need to be improved and if the goal is to increase the value of the targeted tidal flat. The method demonstrates an effective approach in environmental conservation for the restoration and preservation of coastal areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...