Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(6): 471-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38472071

RESUMO

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Reatores Biológicos , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Cricetinae , Anticorpos Monoclonais/biossíntese , Produtos Biológicos/metabolismo , Imunoglobulina G/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Técnicas de Cultura Celular por Lotes/métodos
2.
Sci Rep ; 13(1): 21805, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071246

RESUMO

Chinese hamster ovary (CHO) cells are widely utilized in the production of antibody drugs. To ensure the production of large quantities of antibodies that meet the required specifications, it is crucial to monitor and control the levels of metabolites comprehensively during CHO cell culture. In recent years, continuous analysis methods employing on-line/in-line techniques using Raman spectroscopy have attracted attention. While these analytical methods can nondestructively monitor culture data, constructing a highly accurate measurement model for numerous components is time-consuming, making it challenging to implement in the rapid research and development of pharmaceutical manufacturing processes. In this study, we developed a comprehensive, simple, and automated method for constructing a Raman model of various components measured by LC-MS and other techniques using machine learning with Python. Preprocessing and spectral-range optimization of data for model construction (partial least square (PLS) regression) were automated and accelerated using Bayes optimization. Subsequently, models were constructed for each component using various model construction techniques, including linear regression, ridge regression, XGBoost, and neural network. This enabled the model accuracy to be improved compared with PLS regression. This automated approach allows continuous monitoring of various parameters for over 100 components, facilitating process optimization and process monitoring of CHO cells.


Assuntos
Técnicas de Cultura de Células , Análise Espectral Raman , Cricetinae , Animais , Análise Espectral Raman/métodos , Cricetulus , Células CHO , Teorema de Bayes , Técnicas de Cultura de Células/métodos , Anticorpos , Aprendizado de Máquina
3.
Sci Rep ; 12(1): 7239, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610229

RESUMO

Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter's potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.


Assuntos
Formação de Anticorpos , Técnicas de Cultura Celular por Lotes , Animais , Anticorpos Monoclonais/genética , Células CHO , Cricetinae , Cricetulus , Meios de Cultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...